Demand response – scheduling and aggregation

Josh Taylor

1 Overview

Basic idea:

- Loads adjust power consumption to help power systems
- Industrial loads (steel mill), buildings (Ikea, Walmart, supermarkets), devices (lights, HVAC, 'smart' appliances, EVs)
- Key issue communication between load and aggregator

Functionalities

- Curtailment
- Load-shifting/arbitrage
- Power balancing
- Regulation

Paradigms

- Direct load control
 - Aggregator controls load
 - Versatile, fast, better for power system
 - Minimal attention from load
- Indirect load control
 - Load operator (e.g., home resident) controls load in response to signal,
 e.g., price
 - Less reliable, implausible for fast services

- Gives choice to load
- Hybrids
 - Can be worst of both worlds
 - Less flexible than DLC
 - Little consumer choice with programmed response
 - Can induce volatility
 - Some let consumers choose degree of involvement

Problems in DR

- Managing loads
 - Scheduling
 - Controlling
- Representing loads
 - Aggregator communicates capabilities to SO
- Paying loads
 - Dynamic pricing for ILC
 - Contracts that incentivize participation in DLC.
- Uncertainty
 - Few measurements, power not information measurements, inaccurate models, exogenous inputs (humans, weather ...)
 - Identification what's the model?
 - Estimation what's the state?
 - Learning balancing usage with estimation/learning

2 Basic problem formulation

2.1 Tasks

Many flexible resources must be scheduled. Time of energy delivery not important.

- Laundry
- Dishwasher
- EV charging

Parameters

- Task i present from time $\{a_i, ..., d_i\}$ (arrival and departure)
- Power i receives at time k: $p_i(k)$
- Total energy need: E_i

Constraints

• Task completion:

$$\sum_{k} p_i(k) = E_i$$

• Power limit:

$$0 \le p_i(k) \le m_i$$

• Arrival/departure constraint

$$p_i(k) = 0 \quad k \notin \{a_i, ..., d_i\}$$

Assumptions: no other constraints on $p_i \in \mathbb{R}^T$, e.g.,

- discreteness
- interruptibility

2.2 System

- Inflexible demand and generation (renewable): q(k)
- Dispatchable generation: g(k)
- Flexible EV consumption
- Cost: f(g(k))

Standard optimization problem:

$$\min_{p,g} \quad \sum_{k} f(g(k))$$
s.t.
$$g(k) + q(k) = \sum_{i} p_{i}(k)$$

$$0 \le p_{i}(k) \le m_{i}$$

$$p_{i}(k) = 0, \quad k \notin \{a_{i}, ..., d_{i}\}$$

$$\sum_{k} p_{i}(k) = E_{i}$$

3 Scheduling

Standard approach is impractical due to uncertainty

- q(k) is random
- a_i , d_i , E_i are all unknown until task arrival, a_i .

Need a policy:

- Makes decision based on current information, well-suited to uncertainty.
- Convex optimization/multi-period OPF trajectory, based on predictions
- Dynamic programming/inventory control policy, incorporates new info online
- Problem: optimal scheduling policy NP-hard
- Follow formulation from [5].

Real-time formulation

- g(k): scheduled in advance, fixed
- r(k): reserves, expensive
- Energy state of load i:

$$e_i(k) = E_i - \sum_{l=a_i}^k p_i(l)$$

... remaining energy to deliver.

3.1 Earliest deadline first (EDF)

Algorithm at time k:

- 1. Observe q(k), new arrivals, departures, energy needs.
- 2. Set $\hat{g}(k) = q(k) + g(k)$.
- 3. Compute $e_i(k)$ for all i with $a_i \leq k \leq d_i$.
- 4. Rank loads by increasing d_i , i_1 , i_2 ...
- 5. Deliver $p_{i_j}(k) = \min(m_{i_j}, e_{i_j}(k), \hat{g}(k))$ to i_j , set $\hat{g}(k) = \hat{g}(k) p_{i_j}(k)$
- 6. If $\hat{g}(k) = 0$, and $d_i = k$ and $e_i(k) > 0$ for some load i, satisfy with r(k)

Comments

- A type of greedy algorithm
- From Processor Time Allocation in computers
- Optimal when $m_i = \infty$ for all i; unfortunately, unrealistic

3.2 Least laxity first (LLF)

Define laxity:

$$\sigma_i(k) = (d_i - k) - \frac{e_i(k)}{m_i}$$

Interpretation:

- (time to deadline) (min periods necessary to satisfy remaining load) ...
- ... i.e., number of periods before max charging until departure is required Algorithm: similar to EDF, but with $\sigma_i(k)$ instead of $e_i(k)$.
 - 1. Observe q(k), new arrivals, departures.
 - 2. Compute $e_i(k)$ and $\sigma_i(k)$ for all i with $a_i \leq k \leq d_i$.
 - 3. Rank loads by increasing $\sigma_i(k)$, $i_1, i_2...$,
 - 4. Deliver $p_{i_j}(k) = \min(m_{i_j}, e_{i_j}(k), \hat{g}(k))$ to i_j , set $\hat{g}(k) = \hat{g}(k) p_{i_j}(k)$
 - 5. If $\hat{g}(k) = 0$, and $\sigma_i(k) < 0$ for some load, satisfy with r(k)

Comments

• Better than EDF; more realistic, same complexity

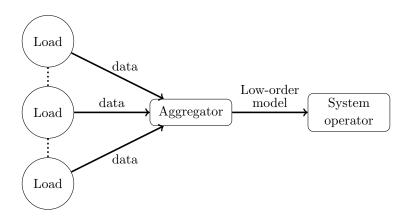
4 Aggregation

Entities

- Many loads
- Aggregator manages the loads
- System operator purchases services from aggregator

Problem

- System operator must know aggregator's capabilities to plan decisions.
- \bullet System operator doesn't want individual models of 10^6 AC's and heaters.
- Aggregator must provide a reduced order model of the aggregation.



Special case: polytopes

- $Ax \le b, A \in \mathbb{R}^{N \times T}, b \in \mathbb{R}^N$
- x(t) is the energy use of the load in time period t
- \bullet Bounded \Rightarrow finite power consumption

4.1 Example: charging electric vehicles

Three constraints:

• Energy demand: $\sum_{t=1}^{T} x(t) = E$

• Only charging: $x(t) \ge 0$ for all t

• Power limit: $x(t) \leq P$

Matrix form:

$$A = \begin{bmatrix} 1, \dots, 1 \\ -1, \dots, -1 \\ -I \\ I \end{bmatrix}, \quad b = \begin{bmatrix} E \\ -E \\ \mathbf{0} \\ \mathbf{P} \end{bmatrix}$$

4.2 Load aggregation as the Minkowski sum

Given M loads, what are the capabilities of the aggregation?

• Loads i = 1, ..., M

• Define $Q^i = \{x \mid A^i x \leq b^i\} \subset \mathbb{R}^T$

• Aggregate capabilities:

$$Q = \left\{ x \mid x = \sum_{i=1}^{M} x^{i}, \ x^{i} \in Q^{i}, \ i = 1, ..., M \right\} \subset \mathbb{R}^{T}$$

ullet Q is the Minkowski sum of the Q^i 's.

Representations of polytopes.

• H-representation: half-planes, $a_k x \leq b_k$...rows of $Ax \leq b$

• V-representation: a collection of vertices, $x^k \in \mathbb{R}^T$

• Example: unit square in \mathbb{R}^2 .

- Half-plances: $x_1 \ge 0, x_2 \ge 0, x_1 \le 1, x_2 \le 1$

- Vertices: (0,0),(1,0),(0,1),(1,1)

How hard is computing Minkowski sum?

- If all Q^i are in V-representation, easy. Compute each vertex pair $\{x^1 + x^2 \mid x^1 \in Q^1, x^2 \in Q^2\}$, and take convex hull.
- If all Q^i are in H-representation, no known tractable algorithm. No good way to do it in H-representation. Converting from H to V-representation is computationally intractable [3].

Various approximations to this problem

- Outer approximation: If $Q^1 = \{x \mid Ax \leq b^1\}$ and $Q^2 = \{x \mid Ax \leq b^2\}$, an outer approximation is $Q^3 = \{x \mid Ax \leq b^1 + b^2\}$ [1].
- Formulas for electric vehicles [4]
- Formulas for TCLs [2]
- More on TCLs based on homothets [6]

References

- [1] S.F. Barot and J.A. Taylor. A concise, approximate representation of a collection of loads described by polytopes. *International Journal of Electrical Power & Energy Systems*, 84:55 63, 2017.
- [2] H. Hao, B. M. Sanandaji, K. Poolla, and T. L. Vincent. Aggregate flexibility of thermostatically controlled loads. *IEEE Transactions on Power Systems*, 30(1):189–198, Jan 2015.
- [3] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, and Vladimir Gurvich. Generating all vertices of a polyhedron is hard. *Discrete & Computational Geometry*, 39(1-3):174–190, 2008.
- [4] A. Nayyar, J.A. Taylor, A. Subramanian, D.S. Callaway, and K. Poolla. Aggregate flexibility of collections of loads. In *Decision and Control* (CDC), IEEE 52nd Annual Conference on, pages 5600–5607, Dec. 2013. Invited.
- [5] Anand Subramanian, Manuel J. Garcia, Duncan S. Callaway, Kameshwar Poolla, and Pravin Varaiya. Real-time scheduling of distributed resources. Smart Grid, IEEE Transactions on, 4(4):2122–2130, 2013.

[6] L. Zhao, W. Zhang, H. Hao, and K. Kalsi. A geometric approach to aggregate flexibility modeling of thermostatically controlled loads. *IEEE Transactions on Power Systems*, 32(6):4721–4731, Nov 2017.