Frequency Response of FIR Filters

Lecture #10 Chapter 6

Properties of the Frequency Response

• Relationship of the Frequency Response to the Difference Equation and Impulse Response

Difference Equation ⇔ Impulse Response

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] \iff h[n] = \sum_{k=0}^{M} b_k \delta[n-k]$$

Difference Equation ⇔ Frequency Response

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] \iff y[n] = (\sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}) A e^{j\phi} e^{j\hat{\omega}n} = H(e^{j\hat{\omega}}) A e^{j\phi} e^{j\hat{\omega}n}$$

$$h[n] = \sum_{k=0}^{M} b_k \delta[n-k] \iff H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k} = \sum_{k=0}^{M} h[k] e^{-j\hat{\omega}k}$$

Time Domain ⇔ Frequency Domain

Go between the difference equation, impulse response and the

frequency response by knowing the b_k 's

Example

$$h[n] = -\delta[n] + 3\delta[n-1] - \delta[n-2]$$

$$\{b_k\} = \{-1, 3, -1\}$$

$$y[n] = -x[n] + 3x[n-1] - x[n-2]$$

$$H(e^{j\hat{\omega}}) = -1 + 3e^{-j\hat{\omega}} - e^{-j2\hat{\omega}}$$

Periodicity of the Frequency Response

• The Frequency Response is a periodic function of 2π

$$H(e^{j(\hat{\omega}+2\pi)}) = \sum_{k=0}^{M} b_k e^{-j(\hat{\omega}+2\pi)k}$$
$$= \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k} e^{-j2\pi k}$$
$$= H(e^{j\hat{\omega}})$$

since $e^{-j2\pi k} = 1$ when k = 1

Therefore, we always express $H(e^{j\hat{\omega}})$

over one period, e.g.,
$$-\pi < \hat{\omega} < \pi$$

Conjugate Symmetry

• If the filter coefficients are real (i.e., $b_k=b_k^*$), then the frequency response has conjugate symmetry and

$$H(e^{-j\hat{\omega}}) = H^*(e^{j\hat{\omega}})$$

- As a result,
 - In polar form, the magnitude is an even function and the phase is an odd function
 - In Cartesian form, the real part is an even function and the imaginary part is an odd function
- Therefore, we only have to show the frequency for one half of a period, (e.g., between 0 and π)

Proof of Conjugate Symmetry

$$H*(e^{j\hat{\omega}}) = \left(\sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}\right)^*$$

$$= \sum_{k=0}^{M} b_k * e^{+j\hat{\omega}k}$$

$$= \sum_{k=0}^{M} b_k e^{-j(-\hat{\omega})k}$$

$$= H(e^{-j\hat{\omega}})$$

Proof of Conjugate Symmetry

$$H(e^{j\hat{\omega}}) = |H(e^{j\hat{\omega}})| e^{j\angle H(e^{j\hat{\omega}})}$$

$$H(e^{-j\hat{\omega}}) = |H(e^{-j\hat{\omega}})| e^{j\angle H(e^{-j\hat{\omega}})}$$

$$= |H^*(e^{j\hat{\omega}})| e^{j\angle H^*(e^{j\hat{\omega}})}$$

$$= |H(e^{j\hat{\omega}})| e^{-j\angle H(e^{j\hat{\omega}})}$$

$$|H(e^{-j\hat{\omega}})| = |H(e^{j\hat{\omega}})| \text{ even function}$$

$$\angle H(e^{-j\hat{\omega}}) = -\angle H(e^{j\hat{\omega}}) \text{ odd function}$$

Proof of Conjugate Symmetry

$$H(e^{j\hat{\omega}}) = \Re e[H(e^{j\hat{\omega}})] + j\Im m[H(e^{j\hat{\omega}})]$$

$$H(e^{-j\hat{\omega}}) = \Re e[H(e^{-j\hat{\omega}})] + j\Im m[H(e^{-j\hat{\omega}})]$$

$$= \Re e[H^*(e^{j\hat{\omega}})] + j\Im m[H^*(e^{j\hat{\omega}})]$$

$$= \Re e[H(e^{j\hat{\omega}})] - j\Im m[H(e^{j\hat{\omega}})]$$

$$\Re e[H(e^{-j\hat{\omega}})] = \Re e[H(e^{j\hat{\omega}})] \text{ even function}$$

$$\Im m[H(e^{-j\hat{\omega}})] = -\Im m[H(e^{j\hat{\omega}})] \text{ odd function}$$

Graphical Representation of the Frequency Response

- The frequency response varies with frequency
- By choosing the coefficients of the difference equation, the shape of the frequency response vs frequency can be developed.
- Examples are:
 - filters which only pass low frequencies
 - filters which only pass high frequencies
 - filters which only alter the phase
- Therefore, we usually plot the amplitude and phase of the frequency response vs. frequency
 - This is sometimes called the Bode Plot

Delay System

- A simple FIR filter: $y[n]=x[n-n_0]$
- Therefore, from the difference equation, $k = n_0$ and $b_{n_0} = 1$ and the Frequency Response becomes:

$$H(e^{j\hat{\omega}}) = e^{-j\hat{\omega}n_0}$$

$$\angle H(e^{j\hat{\omega}}) = -\hat{\omega}n_0$$
BME 310 Biomedical Computing -

J.Schesser

First-Difference System High Pass Filter

$$y[n] = x[n] - x[n-1]$$

$$H(e^{j\hat{\omega}}) = 1 - e^{-j\hat{\omega}} = e^{-j\hat{\omega}/2} (e^{j\hat{\omega}/2} - e^{-j\hat{\omega}/2})$$

$$= 2je^{-j\hat{\omega}/2} \sin(\hat{\omega}/2)$$

$$= 2e^{j\pi/2}e^{-j\hat{\omega}/2} \sin(\hat{\omega}/2)$$

$$= 2e^{-j(\hat{\omega}-\pi)/2} \sin(\hat{\omega}/2)$$

$$|H(e^{j\hat{\omega}})| = 2 \left| \sin \frac{\hat{\omega}}{2} \right|$$

$$\angle H(e^{j\hat{\omega}}) = -(\hat{\omega} - \pi)/2$$

Simple Low Pass Filter

$$y[n] = x[n] + 2x[n-1] + x[n-2]$$

$$H(e^{j\hat{\omega}}) = 1 + 2e^{-j\hat{\omega}} + e^{-j2\hat{\omega}}$$

$$= e^{-j\hat{\omega}}(e^{j\hat{\omega}} + 2 + e^{-j\hat{\omega}})$$

$$= (2 + 2\cos\hat{\omega})e^{-j\hat{\omega}}$$

$$\left| H(e^{j\hat{\omega}}) \right| = (2 + 2\cos\hat{\omega})$$

$$\angle H(e^{j\hat{\omega}}) = -\hat{\omega}$$

Cascaded LTI Systems

- Recall that two systems cascaded together, then the overall impulse response is the convolution of the two individual impulse responses.
- It turns out the frequency response of a cascaded system is the product of the individual frequency responses.

Proof of the Frequency Response of Cascaded Systems

$$y_{1}[n] = H_{1}(e^{j\hat{\omega}})e^{j\hat{\omega}n}$$

$$y[n] = y_{2}[n] = H_{2}(e^{j\hat{\omega}})y_{1}[n] = H_{2}(e^{j\hat{\omega}})H_{1}(e^{j\hat{\omega}})e^{j\hat{\omega}n}$$

$$H_{T}(e^{j\hat{\omega}}) = H_{2}(e^{j\hat{\omega}})H_{1}(e^{j\hat{\omega}})$$

Therefore, these processes are related

$$h_1[n] \otimes h_2[n] \Leftrightarrow H_2(e^{j\hat{\omega}})H_1(e^{j\hat{\omega}})$$

Running-Average Filtering

• A simple LTI system defined as the L-point running average $y[n] = \frac{1}{L} \sum_{k=0}^{L-1} x[n-k]$

$$= \frac{1}{L}(x[n] + x[n-1] + \cdots + x[n-(L-1)])$$

The frequency response is then

$$H(e^{j\hat{\omega}}) = \frac{1}{L} \sum_{k=0}^{L-1} e^{-j\hat{\omega}k}$$

The Frequency Response of the Running Average Filter

$$H(e^{j\hat{\omega}}) = \frac{1}{L} \sum_{k=0}^{L-1} e^{-j\hat{\omega}k}$$

Using the formula for the partial sums of a geometric series

$$\sum_{k=0}^{L-1} \alpha^k = \frac{1-\alpha^L}{1-\alpha}$$

$$H(e^{j\hat{\omega}}) = \frac{1}{L} \sum_{k=0}^{L-1} e^{-j\hat{\omega}k} = (\frac{1}{L})(\frac{1 - e^{-j\hat{\omega}L}}{1 - e^{-j\hat{\omega}L}})$$

$$= (\frac{1}{L})(\frac{e^{-j\hat{\omega}L/2}(e^{+j\hat{\omega}L/2} - e^{-j\hat{\omega}L/2})}{e^{-j\hat{\omega}/2}(e^{+j\hat{\omega}/2} - e^{-j\hat{\omega}/2})})$$

$$= (\frac{1}{L})(\frac{\sin \hat{\omega}L/2}{\sin \hat{\omega}/2})e^{-j\hat{\omega}(L-1)/2}$$

Therefore,

$$H(e^{j\hat{\omega}}) = D_{I}(e^{j\hat{\omega}})e^{-j\hat{\omega}(L-1)/2}$$

$$D_L(e^{j\hat{\omega}}) = \frac{\sin \hat{\omega}L/2}{L\sin \hat{\omega}/2} \Leftarrow \text{ Dirichlet Function}$$

Plot of the Dirichlet Function

What happens when $\hat{\omega} = 0$?

$$D_L(e^{j0}) = \frac{\sin 0}{L\sin 0} = \frac{0}{0}$$

Using L'Hopital's rule

$$\lim_{\hat{\omega} \to 0} D_L(e^{j\hat{\omega}}) = \lim_{\hat{\omega} \to 0} \frac{\sin \hat{\omega} L/2}{L \sin \hat{\omega}/2} = \frac{\lim_{\hat{\omega} \to 0} \frac{d \sin \hat{\omega} L/2}{d\hat{\omega}}}{L \lim_{\hat{\omega} \to 0} \frac{d \sin \hat{\omega}/2}{d\hat{\omega}}}$$

- Properties of $D_L(e^{j\hat{\omega}})$: $=\frac{\lim_{\hat{\omega}\to 0}(L/2)(\cos\hat{\omega}L/2)}{L\lim_{\hat{\omega}\to 0}(1/2)(\cos\hat{\omega}/2)} = \frac{(L/2)}{(L/2)} = 1$

 - Even Function and periodic in 2π
 - Maximum at 0
 - Has zeroes at integer multiples of $2\pi / L$
- Low Pass Filter

Smoothing an Image

• See Figures 6-11 through 6-15 for example of the application of the running average filter.

Reconstruction of a Continuoustime signal

• Recall:

- The sampling theorem suggests that a process exists for reconstructing a continuous-time signal from its samples.
- If we know the sampling rate and know its spectrum then we can reconstruct the continuous-time signal by scaling the principal alias of the discrete-time signal to the frequency of the continuous signal.
- The principal alias will always be in the range between $\theta \sim \pi$ if the sampling rate is greater than the Nyquist rate.

Continued

• If continuous-time signal has a frequency of ω , then the discrete-time signal will have a principal alias of

$$\hat{\omega} = \omega T_s = \frac{\omega}{f_s}$$

• So we can use this equation to determine the frequency of the continuous-time signal from the principal alias:

$$\omega = \hat{\omega} f_s = \frac{\hat{\omega}}{T_s}$$

• Note that the principal alias must be less than p if the Nyquist rate is used $2\pi f \qquad 2\pi f$

$$\hat{\omega} = \omega_{MAX} T_s = 2\pi f_{MAX} T_s = \frac{2\pi f_{MAX}}{f_s} = \frac{2\pi f_{MAX}}{f_s (\ge 2f_{MAX})} \le \pi$$

• And the reconstructed continuous-time frequency must be

$$\omega = 2\pi f = \hat{\omega} f_s \Rightarrow f = \frac{\hat{\omega} f_s}{2\pi} \le \frac{\pi f_s}{2\pi} = \frac{f_s}{2}$$

Low Pass Filter

- Since we are within the Nyquist rate, the principal alias is $< \pi$
- Best reconstruction is Low Pass Filter or what the text calls:
 Ideal Bandlimited Interpolation

Reconstruction of a Continuous-time signal in terms of the Frequency Response

$$x(t) = Xe^{j\omega t} \Leftarrow \text{Continuous-Time Signal}$$

 $x[n] = Xe^{j\omega nT_s} = Xe^{j\hat{\omega}n} \Leftarrow \text{Sampled Continuous-Time Signal}$
 $\Leftrightarrow \text{Ideal C-to-D conversion}$
 $\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s}$

$$y[n] = H(e^{j\hat{\omega}}) \ Xe^{j\hat{\omega}n} \Leftarrow$$
 Applying the a filter to recover the signal $= H(e^{j\omega T_s}) \ Xe^{j\omega T_s n}$ $y(t) = H(e^{j\omega T_s}) \ Xe^{j\omega t} \Leftarrow$ Ideal D-to-C conversion \Leftarrow only good for $-\pi/T_s < \omega < \pi/T_s$ \Leftarrow since for $-\pi < \hat{\omega} < \pi$ to obtain the principal alias

Example

$$y[n] = \frac{1}{11} \sum_{k=0}^{10} x[n-k]$$

 \Leftarrow 11-point filter

$$H(e^{j\hat{\omega}}) = \frac{\sin \hat{\omega} 11/2}{11\sin \hat{\omega}/2} e^{-j\hat{\omega}5}$$

← Its Frequency Response

$$H(e^{j2\pi(25)/1000}) = \frac{\sin(2\pi(25)/1000 \times 11/2)}{11\sin(2\pi(25)/1000/2)} e^{-j2\pi(25)/1000 \times 5}$$

$$= \frac{\sin(\pi(25)(11)/1000)}{11\sin(\pi(25)/1000)} e^{-j\pi(25)/1000}$$

$$= 0.8811 e^{-j\pi/4} \qquad \Leftarrow \text{FR at } f = 25$$

$$H(e^{j2\pi(250)/1000}) = \frac{\sin(2\pi(250)/1000\times11/2)}{11\sin(2\pi(250)/1000/2)}e^{-j2\pi(250)/1000\times5}$$
$$= \frac{\sin(\pi(250)(11)/1000)}{11\sin(\pi(250)/1000)}e^{-j\pi(250)/100}$$

=
$$0.0909e^{-j(2\pi+\pi/2)}$$
 = $0.0909e^{-j\pi/2}$ \Leftarrow FR at $f = 250$

$$y(t) = .8811\cos(2\pi(25)t - \pi/4)$$

$$+0.0909\cos(2\pi(250)t - \pi/2)$$
 \Leftarrow Reconstructed Signal

Homework

- Exercises:
 - -6.2-6.6
- Problems:
 - 6.14 Use Matlab to plot the Frequency Response; show your code
 - -6.15
 - 6.17, 6.19, Use Matlab to plot the Frequency Response;
 show your code
 - -6.20, 6.21