Frequency Response of FIR
Filters

Lecture #10
Chapter 6
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Properties of the Frequency Response

« Relationship of the Frequency Response to the Difference
Equation and Impulse Response
Difference Equation < Impulse Response

Zb x[n—k]< hln Zb S[n
Difference Equation < Frequency Response

M M A . A . . A
= Ebkx[n —k]l o y[n]= (Z be ™) Ae’e’™ = H(e'”)Ae’’ e’

M M i M -
=Y bbln—-k]e H(E?) =) be’™ = hkle’™
k=0 k=0 k=0

Time Domain < Frequency Domain
Go between the difference equation, impulse response and the

frequency response by knowing the b, 's
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Example

h[n]=-o[n]+30[n—-1]-0[n—-2]

4 ={-L3,—-1}

yln|=—x|n]|+3x[n—-1]—x|n—-2]
H(e!?)=—143e7" —¢/*
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Periodicity of the Frequency Response

* The Frequency Response 1s a periodic function

of 27 . M .
H(e](a)+ 7Z')) _ Ebke_J(w+ )
k=0

M
—jik —j2mk
=Zbke e
k=0

= H(e’®)
since e /™ =1when k =1
Therefore, we always express H (e’?)

over one period,e.g.,-T < W< 7
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Conjugate Symmetry

I the filter coefficients are real (1.e., b,=b,*), then the
frequency response has conjugate symmetry and

H(e’*)y=H*(e’*)
As a result,

— In polar form, the magnitude 1s an even function and the
phase 1s an odd function

— In Cartesian form, the real part 1s an even function and the
imaginary part 1s an odd function

Therefore, we only have to show the frequency for
one half of a period, (e.g., between 0 and 7)
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Proof of Conjugate Symmetry
K

M
H*(e!?) = (Zbkej(bk )
k=0

%+ jok
b, *e

M= IV<

—j(-0)k
b.e

R
I

0

= H(e_jé’)
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Proof of Conjugate Symmetry

H(e'”) =

H(e’?) =

‘H(e‘j‘z’)‘ =

H(e™)e'""

H(e/”)e/"

H *(e"®)]e’

H(e'®)
H(e'®)

e

—j/H (e/?)

even function

ZH(e”)y=—=/H(e’”) odd function
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Proof of Conjugate Symmetry

H(e’”)=Re
H(e7?)=%Re
=Re

=NRe

Re[H (e/”)]=Re

(H(e’”)]+ jSm[H (e'")]
H(e™'”)]+ jSm[H(e™)]
H *(e"”)]+ jSm[H *(e’®)]
(H(e’”)]- jSm[H (e’®)]

"H(e’)] even function

Sm[H (e’*)]=-Sm[H(e’”)] odd function
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Graphical Representation of the
Frequency Response

* The frequency response varies with frequency

* By choosing the coefficients of the difference
equation, the shape of the frequency response vs
frequency can be developed.

« Examples are:

— filters which only pass low frequencies
— filters which only pass high frequencies
— filters which only alter the phase

e Therefore, we usually plot the amplitude and phase of
the frequency response vs. frequency

— This 1s sometimes called the Bode Plot
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Delay System

* A simple FIR filter: y[n]|=x[n-n]

* Therefore, from the difference equation, k = n,

and bn0:1 and the Frequency Response
becomes:

H(e')=e /™

v LH(e’”)=—dm,

\
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First-Difference System
High Pass Filter

yln]=x[n]=x{n-1]

H(e]é)) :1_e—jé) — e—j(?)/2(ej6?)/2 _e—j(?)/Z)

=2je’”?sin(@/2)

=2e/"2e7 7 s5in(@/ 2)

=272 sin(@/2)

lal

()

H(e™) =2 sin—

ZH(@E*)=—(—-m)/2
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Simple Low Pass Filter

yln]=x[n]+2x[n—-1]+x[n—-2]
H(e”)=1+2e7? + e/

=e /(e +2+e77?)

4 3 2 1 0 1 2 3 4
=(2+2cosw)e’”

H(e™) = (2+2cos @) 4
3 A
LH(e)=—-d 2]
14

4 -I3 2 1 ) D 1 I2 3 4
-1 4
-2
3
4
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Cascaded LTIl Systems

« Recall that two systems cascaded together,
then the overall impulse response 1s the
convolution of the two individual impulse
responses.

e It turns out the the frequency response of a
cascaded system 1s the product of the
individual frequency responses.
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Proof of the Frequency Response of
Cascaded Systems

yiln]

x[n] LTI 1 X[n]
hy|n]

oL h,[n]

yi[n]=H, (e’*)e’™
yn]=y,[n]=H,(e'")y[n]= H,(e'")H, (e")e’™

H; (ejd)) =H, (ej(b)Hl (ejd))

Therefore, these processes are related

LTI2
hy[n]

h[nl®n[n]l< H, (ejé))H1 (ej(b)
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Running-Average Filtering

* A simple LTI system defined as the L-point running
average = %Lix[n K]

:%(x[n]+x[n—l]+”'x[l’l—(L—l)])

* The frequency response 1s then

g | RS
H(e™)= Zkz_;e_’wk
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The Frequency Response of the
Running Average Filter

R =
H(e’®) = zEe Jo Therefore,
k=0
DN _ N~ jo(L-1)/2
Using the formula for the H(e’™")= D, (e’")e™” /

i ic seri o Sin@l/2 . .
partial sums of a geometric series D, (/") =1 A/ — Dirichlet Function
L—lakzl_aL Lsin @/2
k=0 l-o

. 1 Lt —]a)L
H(e?)=— = ( )( )

L k=0

1 e—jé)L/2 +jwL/2 e—]a)L/2
- () _,-M( )

e (e —e ’77)

1, sin@L/2. ;o1

= e
( )( " )
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Plot of the Dirichlet Function

What happens when @=0?
: 0 O
D, (') = sin =—
)= im0 0
o N \/ \/ s~ u Using L'Hopital's rule
. dsinal/2
smc?)L/2 },oli% dé
lim D (') = lim O
" —0 dw
. D io | :g{)ré(L/2)(cosa)L/2) (L/2)
* Properties of (e”) Llim(l/2)(cos@2)  (L/2)

— Even Function and periodic in 27z
— Maximum at 0

— Has zeroes at integer multiples of 2w/ L

. .
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Smoothing an Image

* See Figures 6-11 through 6-15 for example of
the application of the running average filter.
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Reconstruction of a Continuous-
time signal

 Recall:

— The sampling theorem suggests that a process exists for
reconstructing a continuous-time signal from its samples.

— If we know the sampling rate and know its spectrum then we
can reconstruct the continuous-time signal by scaling the
principal alias of the discrete-time signal to the frequency of
the continuous signal.

— The principal alias will always be in the range between 0 ~ «
if the sampling rate is greater than the Nyquist rate.
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Continued

If continuous-time signal has a frequency of w, then the discrete-
time signal will have a principal alias of

. 0]
W=l =—

J,

So we can use this equation to determine the frequency of the
continuous-time signal from the principal alias:

Note that the principal alias must be less than p i1f the Nyquist rate

1s used
0=y T, =27, T, = 27 ax = 279 wax

<
fo SE2 i)

And the reconstructed continuous-time frequency must be
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Low Pass Filter

e Since we are within the Nyquist rate, the principal alias 1s <«

 Best reconstruction is Low Pass Filter or what the text calls:
Ideal Bandlimited Interpolation

0.5

v

2.4r -1.6m -0.47 | 0.47 1.6z 24
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Reconstruction of a Continuous-time signal
in terms of the Frequency Response

x(t)= Xe’” <« Continuous-Time Signal
x[n]=Xe’" = Xe’” « Sampled Continuous-Time Signal

< Ideal C-to-D conversion

y[n]= H(e’®) Xe'” < Applying the a filter to recover the signal
= H(e’*") X'
y(t) = H(e’”") Xe’” « Ideal D-to-C conversion
& only good for -7/T, <w < 7/T,

< since for - < @ < & to obtain the principal alias
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Example

10
L Y x{n—k] &11-point filter
k=0
- mwll/2 _.,
H(e'?) = % e/ < Its Frequency Response
sin @

x(t) = cos(2m(25)t) + cos(2m(250)¢) & AnalogSignal f, =1000
H(e'®)=H(e' )= H(e''"™) <FR for £, =1000
— H( j27y‘/1000)

H(ej2zz'(25)/1000 sm(272'(25)/1000><1 1/2) o~ 2(25)/1000<5
11sin (27£(25)/1000/2)

sm(][(25)(1 1)/1000) —j7(25)/1000
11sin (71'(25)/1000)

=0.8811e” /74 &FRat =25 PN ) . N

-250 -200 150 -0 -50 50 1 150, 200 250

Sm(27[(25 O)/IOOOX 11/ 2) e,jzﬂ-(250)/1000><5
11sin (272(250)/1000/2)

sm(ﬂ'(25 0) 1)/1000) — j7(250)/100
[1sin (7(250)/1000)
=0.0909¢ /"> = 0,0909¢ /"> < FR at f =250
(1) = .88 11cos(2(25)t — 7/4)
+0.0909 cos(27(250)t — 7/2) & Reconstructed Signal

H(ejZﬂ'(ZSO)/lOOO) _
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Homework

 Exercises:
— 6.2-6.6

 Problems:

— 6.14 Use Matlab to plot the Frequency Response; show
your code

— 6.15

— 6.17, 6.19, Use Matlab to plot the Frequency Response;
show your code

— 6.20,6.21
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