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Frequency Response of FIR 
Filters 

Lecture #10 
Chapter 6 
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Properties of the Frequency Response 
•  Relationship of the Frequency Response to the Difference 

Equation and Impulse Response 
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Example 
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Periodicity of the Frequency Response 

•  The Frequency Response is a periodic function 
of 2π 
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Conjugate Symmetry 

•  If the filter coefficients are real (i.e., bk=bk*), then the 
frequency response has conjugate symmetry and  

•  As a result, 
–  In polar form, the magnitude is an even function and the 

phase is an odd function 
–  In Cartesian form, the real part is an even function and the 

imaginary part is an odd function 

•  Therefore, we only have to show the frequency for 
one half of a period, (e.g., between 0 and π) 
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Proof of Conjugate Symmetry 
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Proof of Conjugate Symmetry 
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Proof of Conjugate Symmetry 
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Graphical Representation of the 
Frequency Response 

•  The frequency response varies with frequency 
•  By choosing the coefficients of the difference 

equation, the shape of the frequency response vs 
frequency can be developed. 

•  Examples are: 
–  filters which only pass low frequencies  
–  filters which only pass high frequencies 
–  filters which only alter the phase  

•  Therefore, we usually plot the amplitude and phase of 
the frequency response vs. frequency 
–  This is sometimes called the Bode Plot 
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Delay System 

•  A simple FIR filter: y[n]=x[n-n0] 
•  Therefore, from the difference equation, k = n0 

and bn0
=1 and the Frequency Response 

becomes: 
0ˆˆ )( njj eeH ωω −=

0
ˆ ˆ)( neH j ωω −=∠



BME 310 Biomedical Computing - 
J.Schesser 

259 

First-Difference System  
High Pass Filter 
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Simple Low Pass Filter 
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Cascaded LTI Systems 

•  Recall that two systems cascaded together, 
then the overall impulse response is the 
convolution of the two individual impulse 
responses. 

•  It turns out the the frequency response of a 
cascaded system is the product of the 
individual frequency responses. 
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Proof of the Frequency Response of 
Cascaded Systems 
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Running-Average Filtering 
•  A simple LTI system defined as the L-point running 

average 

•  The frequency response is then 
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The Frequency Response of the 
Running Average Filter 
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Plot of the Dirichlet Function 
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•  Properties of                      : 
–  Even Function and periodic in 2π 
–  Maximum at 0 
–  Has zeroes at integer multiples of 2π / L 

•  Low Pass Filter 
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Smoothing an Image 

•  See Figures 6-11 through 6-15 for example of 
the application of the running average filter. 
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Reconstruction of a Continuous-
time signal 

•  Recall: 
–  The sampling theorem suggests that a process exists for 

reconstructing a continuous-time signal from its samples. 
–  If we know the sampling rate and know its spectrum then we 

can reconstruct the continuous-time signal by scaling the 
principal alias of the discrete-time signal to the frequency of 
the continuous signal. 

–  The principal alias will always be in the range between 0 ~ π   
if the sampling rate is greater than the Nyquist rate. 
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Continued 
•  If continuous-time signal has a frequency of ω, then the discrete-

time signal will have a principal alias of  

•  So we can use this equation to determine the frequency of the 
continuous-time signal from the principal alias: 

•  Note that the principal alias must be less than p if the Nyquist rate 
is used 

•  And the reconstructed continuous-time frequency must be 

s

s f
T ωωω ==ˆ

s

s T
f ωωω ˆˆ ==

ππππωω ≤
≥

====
)2(

222ˆ
MAXs

MAX

s

MAX
sMAXsMAX ff

f
f
fTfT

222
ˆˆ2 sss

s

ffffff =≤=⇒==
π
π

π
ωωπω



BME 310 Biomedical Computing - 
J.Schesser 

269 

Low Pass Filter 
•  Since we are within the Nyquist rate, the principal alias is < π 

•  Best reconstruction is Low Pass Filter or what the text calls: 
Ideal Bandlimited Interpolation	
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Reconstruction of a Continuous-time signal 
in terms of the Frequency Response 
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Example 
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Homework 

•  Exercises: 
–  6.2-6.6 

•  Problems: 
–  6.14 Use Matlab to plot the Frequency Response; show 

your code 
–  6.15 
–  6.17, 6.19, Use Matlab to plot the Frequency Response; 

show your code 
–  6.20, 6.21  


