
BME 310 Biomedical Computing -
J.Schesser

299

Frequency Response

Lecture #12
Chapter 10
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Ideal Filters

• We want to study H(jω) functions which 
provide frequency selectivity such as:
– Low Pass
– High Pass
– Band Pass

• However, we will look a ideal filtering, that is, 
filter which have ideal performance but are 
very difficult to construct.
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A simple Filter – Ideal Delay
• Ideal Delay Filter => y(t) = x(t – td): the output is same as the input 

except shifted in time by an amount td  seconds.
• The impulse response is just h(t) = δ(t – td)
• The frequency response is then 

• The Frequency Response of an Ideal Delay filter has a constant 
magnitude with a phase that is linear with frequency

• Therefore, it does not affect the magnitude of the input.  It only effects the 
phase by an amount of -ωtd
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Example
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Ideal Low Pass Filter

• This filter only passes frequencies below a value ωco and 
attenuates all frequencies above ωco.   

• We call ωco the cutoff frequency.
• Therefore, the frequency response of a low pass filter is: 
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Ideal High Pass Filter

• This filter only passes frequencies above a value ωco and 
attenuates all frequencies below ωco.   

• We call ωco the cutoff frequency.
• Therefore, the frequency response of a high pass filter is: 
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Ideal Band Pass Filter
• This filter only passes frequencies above a value ωco1 and 

below a value ωco2 and attenuates all other frequencies 
outside this range.   

• We call ωco1 the lower (or low) cutoff frequency and 
ωco2 the upper (or high) cutoff frequency.

• Therefore, the frequency response of a bandpass filter is: 
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Application of Ideal Filters

• We will apply a band pass filter to a periodic 
square wave filter out its fundamental 
frequency.

• Let our input signal have a period of                 
To = 500µs or fo=2kHz => ωo=2π(2000) rad/sec 
and its form over one period is:

2     0 ≤ t < To / 2
x(t) =

0     To / 2 ≤ t < To
-2To               -To   –To/2   0 To/2 To 2To  

2

x(t)

t
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Application of Ideal Filters

• Since x(t) is a period, let’s calculate the Fourier 
series for to decompose the input into its 
frequency components.
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Application of Ideal Filters
• Now let’s apply an ideal band pass filter with low 

frequency cutoff of 1,250 Hz and high frequency cutoff 
of 2,750 Hz which has a bandwidth of 1500 Hz and is 
centered around 2000 Hz which is the fundamental 
frequency of this square wave.
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Application of Ideal Filters
• If the filter is LTI, then the output signal is also 

periodic with same fundamental frequency.  
Therefore, y(t) can be written as a Fourier Series.
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Time Domain or Frequency 
Domain

• We have seen that a LTI can be represented by its 
impulse response in the time domain and by its 
frequency response in the frequency domain.

• In general when working with sinusoids (or complex 
exponentials) either single or summed signals, it is 
easier to work in the Frequency Domain.

• If the signal consists of impulses, step functions, or 
other non-sinusoidal signals (e.g., signals which are 
progressive integrations of the impulse function), 
convolution of the impulse response (Time Domain) 
is usually easiest.



BME 310 Biomedical Computing -
J.Schesser

311

An Example

• An LTI system has an impulse response of 
h(t) = δ (t) - 200πe-200πtu(t)

• The following signal is applied:
x(t)=10+20δ(t - 0.1)+40cos(200π t+0.3π) for all t

• The input has 3 parts: a constant, an impulse 
and a cosine wave.  We will take each part 
separately and use the easiest method to find 
the solution.
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An Example

• Let’s first find the frequency response of the system 
from the impulse response: 
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An Example
• Now let’s take the first (constant, ω = 0) part and the third (cosine) part and 

evaluate the solution using the frequency response: 
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An Example
• Now for the second part of the input (the impulse 

function), we will apply the impulse response: 

• The Complete solution by superposition is:
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Homework

• Exercises:
– 10.4-10.7

• Problems:
– 10.5, 10.6, 
– 10.7 Use Matlab to plot x(t); show your code


