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What Is this Course All About ?

* To Gain an Appreciation of the
Various Types of Signals and Systems

* To Analyze The Various Types of
Systems

 To Learn the Skills and Tools needed
to Perform These Analyses.

* To Understand How Computers
Process Signals and Systems
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What did we learn so far

* Learned about Signals and Systems
— Continuous-time vs Discrete-time
— Sinusoids
— Complex Exponentials
— Periodic Signals

 How to analyze them
— Sampling
— Time Domain
— Frequency Domain
 How to Process Them
— Filters
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What do we still have left to learn

* How does a Computer handle signals?

— Sinusoids
— B1o Med Signals

* The Computer can’t handle Continuous-time
signals

e The Computer must first sample the signal
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Some more Background

* We saw that the Fourier Series can be used to
handle any periodic signal since 1t can be
decomposed into frequency components.

* But most signals are not periodic
— ECG, EEG, EMQ, etc.
— Voice Signals
— Video Signals
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Fourier Transform

We can handle non-periodic signals 1n a similar
fashion as periodic signals

That 1s, we can decompose them into frequency
components

However, the way we get there 1s different than the
way we use for periodic signals

Periodic signal frequency decomposition use the
Fourier Series which generates a frequency spectrum

Non-periodic signal frequency decomposition use the

Fourier Transform which generates a frequency
DENSITY spectrum.
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Fourier Analysis and Fourier
Transform

 Recall this 1s Fourier Series
x(t) = iakeﬂ’”‘f"’ =A + iAk cos(2af kt +¢,); where A =a ;a, = %Akem a, =a*f :TL

1% -G
a, =—[x(t)e TRt
T o

 Here’s what the Fourier Transtform looks like for
continuous signals, CTFT:
X(jw)= j x(t)e ' dt

1 % -
x(=— | X(jow)e’“dw
0 Zﬂjw (jo)
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Fourier Transforms vs. Fourier Series

* Note that X(jw) 1s a Spectral Density function; that 1s, 1f x(¢) 1s
voltage, then X(jw) 1s volts/rad.
— Note in Fourier series analysis, a;, would also be volts 1s x(¢) 1s voltage.

« Note that X(jw) 1s a continuous function of w and the limits of
integration are over all values of 7.

— Note in Fourier series analysis, g, 1s a discrete function of £f, (and are
/, Hz apart) and the limits of summation are over one period of x()

e A proof of how X(jw) 1s formulated 1s beyond our scope but,
briefly, X(jw) can be obtained by starting with the Fourier
Series of x(#) (as 1f it were periodic) and letting f, go to zero
(1.e., T goes to infinity which make the second repetition of
x(¢) move to infinity and makes x(#) non-periodic.

— This would make the spectral components move closer to each other
(infinitely closer — make 2zkf, a continuous variable w)

— This will also make a, approach zero but the ratio of a,/f,, which 1s a
spectral density, remains finite.
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Discrete-time Fourier Transform

e [f this 1s the continuous-time Fourier Transform

X(jo)= [x(t)e " dt

* Then replacing  with n7, and the integral with a
summation, then the Discrete-Time Fourier
Transtform, DTFT, can be shown to be :

X(jo)= ) x(nT)e’™"

0

X)) = Z x[n]e 7"

n=—0

Recalling that @ = 0T,
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Discrete-time Fourier Transform

* Note that this looks very similar to the Frequency
Response of a system

[e¢]

X(ejé’) = Z x[n]e‘j‘z’”

n=—00

M
H(e?) = Zbke_j”k
k=0

* As a matter of fact, the Fourier Transform of the
Impulse response 1s the Frequency Response

X(e)= S hlkle”™ =3 hlkle ™ = H(e")
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Discrete Fourier Transform

e The DTFT yield a spectrum which is a continuous function of @

0

X(”)= " x[n]e””"

n=—o0

e How do we get around this? Sample the spectrum.

When we sampled in the time domain, we replaced 7 by nT, where T is the distance (in time) between samples.
Therefore to sample in the frequency domain we replace @ = 27 f by 27zkf, where f, is the distance (in frequency)

between spectrum samples.

. . 27k
Note that since @ = wT, = ﬂ;a) -9 27k
A .
/'a}:% e} _ 'Mn
X " )=X[kl=D x[nle

e[ et us assume that there are only L samples for time domain and N samples for the spectrum.
27k,
-J n

X[k]= ix[n]e %

e Since /| is the maxium frequency in the spectrum, then f, A:%_ This is just the resolution of the displaced spectrum.

A, M

J _‘zlk
;s =Zx[n]e N =Zx[n]e v

n=0 n=0

L-1
X[k]=> x[nle
n=0
e This is called the Discrete Fourier Transform
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Discrete Fourier Transform

Since the computer can only process discrete functions of finite time, we

have to define a new Fourier Transform called the Discrete Fourier
Transform, DFT.

— Do not confuse this with the Discrete-time Fourier Transform, DTFT.

It 1s defined as
L1 —jz—ﬁkn
X(k)= Zx[n]e N
n=0

where there are the L samples of x[ 7],

we evaluate the Spectrum over N frequencies, 1.e., 0<k <N —1,

J

and each frequency is f, apart and chose f A:ﬁs

since f 1s the maximum frequency of the spectrum.

Therefore, f A:ﬁs =T We call this the resolution of the spectrum.
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Discrete Fourier Transform

Let's start with the DTFT: X (e’”) = Y x[nle ;& = T

N

Let's divide the spectrum is into NV frequencies equally spaced f, Hz apart

(i.e., we are sampling the spectrum).

T | | | | :

2nf, 2(2xfy) 3(2xf),) N(Q2rf)) 0)
=27f,

Therefore, let's define the kth sample in the frequency domain as w, =27 f = 27kf,

where k goes from 1 to V.

: : : 2N
When k = N, the highest frequency in the spectrum is @, = %=27er 2

o
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Discrete Fourier Transform

I | | | |

I 2nf,  2(2xf)) 3(2xf),) N(Q2xf)) W
] | | | :
2nfy/N 20 f./N) 3Qxf,/N) NQxf./Ny-2nf, o
I | | | :
2r/N 22z /N) 32z /N) NQr /N)=2r @
If / meets the Nyquist rate, then the one-sided spectrum of x[n] = X (e’*) must end at or below %
. 27k 2
Therefore, o, =w, T =27kf, T = 7, T = ;k.
. © . 0 —j@n
Let's substitute @, for @ in the DTFT: X (e’ ) = Z x[n]e /" = Z x[nle N
This sum will only be a function of £. In addition, let's assume that there are L samples of x[#].
) L1 2k
Then, we have the Discrete Fourier Transform, DFT as X[k]= X (e’ ) = Zx[n]e TN
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Computer Processing

e Computers use the DFT to determine the
spectrum of a signal x(z).

* There are different computer algorithms for
processing the DFT
— The most widely used algorithm 1is called the Fast
Fourier Transform: FFT
* Note that the DFT 1s just like a discrete Fourier
Series 1n the Frequency Domain

x(t):iakejz’kt < Xlk]=) x[n]le ¥

fk=—00 n=0
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How to Evaluate the DFT
Method 1: Expand = first, then k.

« What 1s the DFT for the x[n]={1, 1, 0, 0} assuming N=4

X[k]= Zx[n]e Zx[n]e X[0]=1+1e 2 =2

—jZ k0 —iZK k2 _i%k3 i
= x[0]e 72 +x[1]e 3 +x[2]e 5 +x[3]e 27 X[1]= 1+le =1-j= \/76
JZk JZk2 —jZk3

—1+le 2 +0e 2 +0e 2

X[2]=1+le 2 =1+le’"=1-1=0

lt1e

X[3]=1+1e /2 =14 j=+2¢'*

X[k]=12,+2 ¢’ 0, J2¢s
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Method 2:

Expand £ first, then ».

« What 1s the DFT for the x[n]={1, 1, 0, 0} assuming N=4

X[k]= 3 x{nle "

X[0]=Y x[nle” "

=x[0]e”" + x[1]e””" + x[2]e”" + x[3]e”” =1+(-1)+0+0=0

=1+14+0+0=2

X[1]= ix[n]e_jz‘fl”

— x[0]e” +x{l]e = +x[2]e " +x[3]e

=1+(—j)+0+0=«5ejz

X[2] = Zi:x[n]ejzfzn

=x[0]e”™ + x[1]le™” + x[2]e”"* + x[3]e™”*"

XBl=Yanle "

3 L4

= x[0]e”™ +x{1le * +x{2]e”™ +x{3le*

=1+j+0+0:«/§ejz

(] = 12,42 ' 0,426 1)
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Another Example: Method 1

 What is the DFT for the x[n]={1, 1, 1, 0, 0, 0} assuming N=6

S —jz—”kn S —j—kn

X[k]sz[n]e 6 :Zx[n]e 3

n=0 n=0

—iZk Sy Sy ~i%k3 —iZka —iZks
=x[0]le * +x[lle * +x[2]e * +x[3]le ® +x[4]le * +x[5]e ?

% = iy %k —iZks
=l+e 3 +e 3 +0e 3 +0e 3 +0e 3

Tk —i%k2

Zo —j%02

X[0]=1+¢e * +e

X[]=14¢ 3 +e’

.12

X[2]=1+e * +e

3

3

T
73

i =1+.5-;0.86-.5-0.86=1-;2(0.86) =2¢ *

=3

T
-j=

' o1-5- j0.86+ -5+ j0.86=0

T3 %

X[3]=1+e * +e * =1-1+1=1

Ty

X[4]=1+e * +e

'15

X[5]=1+e 3 +e’

3

7
3

=8

=0

0 N
=1+.5+ j0.86—.5+ j0.86=2¢
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Method 2

 What is the DFT for the x[#]={1, 1, 1, 0, 0, 0} assuming N=6

5 27 2 7T T T T
—j—kn —j—kn —j—kl —j—k2
X[k]:Zx[n]e 6 =Ze 3 o =1l4e 3 4+e 3 =l+e
n=0 n=0
T 2r
R
X[0]=1+e¢ +e =3
B - _iE A _;x
X[l]=14+¢e * +e 3 =1l4+e *+e 3 =2e 3
_jgz _jzlz _jzi _]41
X[2]=1+e 3 4+e * =l+4+e 3 +e 3 =0
S -jr | itw
X[3]=1+e +e =1+e’" +e =1
_]£4 _jzl _]4i _ng
X[4]=1+e ° +e * =l+e °* +e ° =0
_i%s  _j® o i Jul
X[5]=1+e 3 4+e 3 =l+e 3 +e 3 =2e°

BME 310 Biomedical Computing -

J.Schesser

334



What is the right hand side of the
FFT.vi spectrum?

* Note that N and L are usually taken to be the same in order to
casily calculate X[4].

* Note that due to this fact X[N k1=X]-k|=X*[k]
Zx[n

= Zx[n:e‘”””ej]vkn = Z_x[n]e'N n
= X[—k]=X *[k]

e Therefore, X[-k] will show up as X[N — k]
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Take a look at our Example
« What 1s the DFT for the x[n]={1, 1, 0, 0} assuming N=4

X[k]= ix [n]le *"

X[-1]= ixn]e -

3

= x[0]e™ +[1]e”? + x[2]e" + x[3]e”

—1+(j)+0+0=~2¢"
= X[4—1]= X[3]
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Another Example

Here we have a signal whose digitized frequency is @,
x[n]=e“"? forn=0,1,2,...,N-1
We now want to obtain the spectrum of our signal using

the DFT. If the DFT is done correctly, we would expect a

the spectrum to show a single component at @,

—j—k
X[k]= Z x[nle Zef(w o1+ ) o= i 2/ N
n=0 n=0
. N-1
— e/ Z e—J[(Mk/N)—a)O]n
n=0
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Another Example Continued

L-1 L
. . . . |-«
Using the partial sum of a geometric series: Zak =
k=0 l-a
1— e—j[(27zk/N)—a30]N —jl(27k/N)-&,1N/2 (e+j[(27zk/N)—a30]N/2 . e—j[(zﬁk/zv)—aso]zv/z)

X[k]=e"( =e’’(

1— e—j[(zﬂk/zv)—aso] ) e—j[(27zk/N)—a30]/2(ej[(27zk/N)—a30]/2 _ e—j[(zﬁk/N)—a‘)o]/z) )

g TN INDR G ([(27k/ N) = IN 1 2)

— ej¢(
sin([(27k/ N)— @ 1/2)

)

_ ej¢e—j[(27rk/N)—a30](N—l)/2 sirol([(27zk/N) - C?)Z]N /2) _ ej¢e—j[(27zk/N)—03o](N—l)/ZDN (e+j[(27rk/N)—c?)0]N)
sin([(27k/ N)— @ 1/2)

where
_ sin([(27k/ N)— @ 1N /2)

: 2 , the Dirichlet function
sin([(27k/N)— @ 1/2)

+j[(27k/N)-&,IN
D, (e

BME 310 Biomedical Computing - 338
J.Schesser



Another Example Continued

XTk] = e/ kM-, 10v-172 sin([(27k/N) - @,IN / 2)
sin([2zk/N)— &, ] /2)
2rk,
f

6?)02272'/(0/]\73600:6?)0]2—

Case 1: k, 1s NOT an integer;
that is, @ is NOT a multiple of 27/N and therefore £, is NOT a multiple of f,,
which is the resolution of the sampled spectrum obtained using DFT.
"k —k, #0 for any value of &
_ /b o 12Tk N) -2k, [NI(N-1)/2 sin([(27k/N)—2xk,/NIN / 2)
sin([(2zk/N)—27k, /N]/2)

6 127/ N (k=k, JI(N-1)/2 sin([27/ N (k - k,)IN/2)

sin([27z/ N(k—k,)]/ 2)

U L LG i, ) B 1
sin[z/N(k—k)]’
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Two Cases for our Example

. 27(2.
say let k, =2.5 and N =40; @, = 7(2-3) 255 =2 201257
40 20 8
If we do this, the figure below shows that do not have a single component at @,
k,=2.5;N =40
| sin((z(k—2.5)]) |
X1k =
sin([z/40(k —2.5)])|
| sinz0-2.5] |
X10]= sin([yz/40(0—2.5)])\_5'1 40
| X[1]|:| sin((z(1-2.5))) | _| sin((z(-1.5)]) |_ 05
Isin([7/40(1-2.5)])| |sin([#/40(-1.5)])| vy
X12] - sin(z(2-2.5)) | sin([z(-0.5)) _ )5 s 20 -
sin([7/40(2-2.5)])| [sin([7z/40(—0.5)])|
3y | _sin(zG-2.5)]) || sin(z0.5)] | _ 55 I I
X0l sin(r/406-2.9)| [sinzao0s| 7wzl 3LLLLLI10r s nnanana
A . -1 -08 -05 -03 025 05 075 1 125 15 175 2 225 25 275 3
X741 - sin((7(4-2.5)) | _| sin((z(1.5)) |_ 05
sin([7/40(4-2.5)])| [sin([7z/40(1.5)])|
-20
etc.
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Another Example Continued

X[k] = & MmN, N-172 sin([((27k/N) - @,IN / 2)
sin([(2zk/N)—a@,]/2)

Case 2: k,is an integer; that is, @, is an integer multiple of 27/N and f; is a multiple of /.
the resolution of the sampled spectrum obtained from the DFT.

.k —k, will be a non-zero integer = / except when k =k,

_ ot o 1A/ N)-2k, [NJ(N-1)/2 sin([(27rk/N) _2771% /N]N/Z)
sin([(27k/N)—27k,/N]/2)
_ oI g 127/ NGk N-1)/2 sin([27/ N (k —k,)IN / 2)
sin([27/N(k—k,)]/20

_ plf o J12AIN Gk, IN-D)/2 sin[7(k — ko )] _ o 127l NIN-1)/2 sin[ 7]
sin[z/N(k—k,)] sin[7zl/ N
=0 £k #k, since the sin(z/)=0

=Ne”’ k=k, (I=0)since X[k, ] =ej¢1%;
using L'Hopital's rule IIII’EIM = 111n3 7 cos| ] =N
~0sinf[zl/N] = ECOS[EI/N]
N
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Two Cases for our Example

A

Case 2: when the fundamental frequency of our signal is a multiple of

which is the resolution of the sampled spectrum obtained from the DFT.

S22 _H 7 _gix
40 20
If we do this, the figure below shows that we have a single component at @, or at k =k, =2.

In order words: X[k]= Ne’’S(k —2) which corresponds to 2x27/40=0.17 = &,

thatis say k, =2 and N =40; @,

40 - y

20 -

——die s diis i (@ s s o e > s s b db b b b e s s
-1 -08 -05 -03 0 025 05 075 1 125 15 175 2 225 25 275 3

-20 -
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Time Domain & Frequency
Domain

e Time Domain

Input
Time signal =’
CT: x(1)
DT: x[n]

LTI System

CT: Differential Eq
DT: Difference Eq

CT: aj(t)+ by(t)+ cy(t) = dx(t) + ex(t)

DT: y[n]= ibkx[n — k]
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Output
Time Signal
CT: ()
DT: y[n]
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Time Domain & Frequency

Domain

Time Domain

Impulse Response

Input
Impulse signal=’
CT: o(2)

DT: J[n]

LTI System

CT: Differential Eq
DT: Difference Eq —>p

CT: ayp(t) +by(t)+cy(t) = dx(t) + ex(t)

DT: y[n] = ibkx[n —k]

BME 310 Biomedical Computing -
J.Schesser

Output
Impulse
Response
CT: h(2)
DT: h[n]
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Time Domain & Frequency
Domain

Time Domain

Input
Time signal =’
CT: x(1)
DT: x[n]

LTI System

CT: Differential Eq

DT: Difference Eq
CT: ay(t)+by(t)+cy(t) = dx(t) + ex(t)

DT: y[n] = ibkx[n —k]
Convolution

CT:y(t)= T x(t)h(t—7)dr

o0

DT: y[n]= D x{{[n-1]

[|=—0
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Output
Time signal
CT: ()
DT: y[n]
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Time Domain & Frequency
Domain

* Frequency Domain

LTI System
Frequency Response

CT: H(jw)= j h(t)e '™ dt = M (w)e

Output
~ M N M n .
DT: H(e'®) = Zbke‘f“k - Z H[kJe 7™ Signal Spectrum
k=0 k=0

Input =’
Signal Spectrum

M
CT: x(t)= 4, + % A cos2r fit+6),) s

M
DT: x{n]= 4, + Y 4, cos(w Tn+6,)
k=0

M
M CT:p()=AMO)e O+ AMQrf)cosQrft+0 —wyr
4+ A cos(@,n+6,) V(0= 4,M(0) 2 AMQrf,)eos(2n 1 +6,—y Q)

k=0

M
DT: y[n]= A,M(0)e '+ 4 M(d,)cos(éd,n+0, —y(&,))
k=0
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Fourier Transform
Signals and Systems

Signals

The FT of a signal transforms it
from the time domain, x(¢) or x[n],
to the frequency domain to yield
its spectral representation, X(jw)
or X[k].

The inverse FT transforms the
signal’s spectrum, X(jw) or X[£],
in the frequency domain to the
time domain, x(¢) or x[n].

The FT can also be applied to
systems.

Systems

The FT of a system’s impulse
response, /(t) or h[n], transforms
it into the frequency response,
H(jw) or H[k].

The inverse FT transforms a
system’s frequency response,
H(jw) or H[k] to the impulse
response, /(%) or h[n].

Note that the impulse response 1s
really the output signal of a
system when the input signal 1s
the impulse function, o(¢) or o[n].
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Fourier Transform
Signals and Systems
The Math is the Same

Signals Systems

* For systems which process
continuous signals, the frequency
response 1s calculated as:

X(jo)= [ xve " di H(jo)= [ hoe ™ dr

* For continuous signals, its spectral
representation 1is:

* For systems which process
discrete signals, the frequency
response 1S a continuous
frequency function of @ and is
calculated as:

» For discrete signals, its spectral
representation is discrete
frequency function of k£ and is
calculated as:

_ R A Lo oM
Xlk]= 2 x[ne H(jo)=H(”)= Y hlkle ™ =Y be ™
k=0 k=0
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Fourier Transform
Signals and Systems
The Math is the Same

25

Frequency Response 1s a continuous function
M-1
joy _ ~ jok
H(”)= Z b.e )
k=0

b, =1{1,0,0,1}

2 c0s(3pi/2w)

a _r\dag

3
H(E")=) be’™ =1+0+0+e/” =1+
k=0
30 30 30 ~ 30
_ oW _ oo W 30) _ o0 4
=e¢ 2 (e "2 42 )22008(7)6 "2
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Fourier Transform

. XTK]
Signals and Systems
The Math is the Same | |
Signal Spectral Density is a discrete function OR 0123 k
27rk
27zk _'Lk _-ﬁ

Xlk]= Zx[n]e X[k]= Zx T 2140404e 2 =l+e
x[n]= {19 0,0,1} 37k _37rk 3k | 3k

3 _ 2k, _ 7y s o=e (e * M )= 2cos(ﬁ)e '
X[k]=) x[nle * =1+0+40+e > =l+e ? _

"0 - X[k]= 2cos(ﬂ)e_l
X[k]=1+e 2 -

3 X[0]= 2cos(@)e )
X[0]=1+e 2 =2 4
Y X1)=2c0sCF)e ¢ = VB¢ =3 F o =2
X[1]=1+e 2 =1+)=+2¢ 4
o
X[2)=1+e’ 2 =1-1=0 X[2]=2cos(37”)e I
_j3i3 i . - B O —j%[_ T —j%_ —j%
X[3]=l+e 2 =l+e 2 =1-j=+/2¢ X[3]=2cos(-)e " ¢ =2cos()e ¢ =2
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Time Domain to Frequency Domain
Transformations

Time Domain

Frequency Domain

Time Signal Computer Transformation Type Frequency Computer
Type processing & Spectrum processing &
storage Type storage
Periodic & Fourier Series Discrete
Continuous
No /2 Py Spectrum Yes
x(0) a,=— .[ x(te T dt a
T k
-T/2
Non-Periodic & Continuous Time Fourier Transform Continuous
Continuous No CTFT Spectral Density No
0 . X(jw)
X(jo)= [ x()e" dt
Discrete Time Fourier Transform Continuous
Discrete Yes DTFT Spectral Density No
] X(e)= 3 Al X(e")
n=—o0
Discrete Fourier Transform Discrete
x[n] EyLL

X[k
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Homework

 Exercises:
—13.2-134,13.6 —13.8

 Problems:

— 13.1 Use Matlab to plot the spectrum; submit your
code

— 13.4,13.5,13.6
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