Computing

Lecture \#13

Chapter 13

What Is this Course All About?

- To Gain an Appreciation of the Various Types of Signals and Systems
- To Analyze The Various Types of Systems
- To Learn the Skills and Tools needed to Perform These Analyses.
- To Understand How Computers Process Signals and Systems

What did we learn so far

- Learned about Signals and Systems
- Continuous-time vs Discrete-time
- Sinusoids
- Complex Exponentials
- Periodic Signals
- How to analyze them
- Sampling
- Time Domain
- Frequency Domain
- How to Process Them
- Filters

What do we still have left to learn

- How does a Computer handle signals?
- Sinusoids
- Bio Med Signals
- The Computer can't handle Continuous-time signals
- The Computer must first sample the signal

Some more Background

- We saw that the Fourier Series can be used to handle any periodic signal since it can be decomposed into frequency components.
- But most signals are not periodic
- ECG, EEG, EMG, etc.
- Voice Signals
- Video Signals

Fourier Transform

- We can handle non-periodic signals in a similar fashion as periodic signals
- That is, we can decompose them into frequency components
- However, the way we get there is different than the way we use for periodic signals
- Periodic signal frequency decomposition use the Fourier Series which generates a frequency spectrum
- Non-periodic signal frequency decomposition use the Fourier Transform which generates a frequency DENSITY spectrum.

Fourier Analysis and Fourier Transform

- Recall this is Fourier Series
$x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j 2 \pi f_{o} t}=A_{o}+\sum_{k=1}^{\infty} A_{k} \cos \left(2 \pi f_{o} k t+\phi_{k}\right) ;$ where $A_{o}=a_{o} ; a_{k}=\frac{1}{2} A_{k} e^{i k_{k}} ; a_{-k}=a_{k} * ; f_{o}=\frac{1}{T_{o}}$

$$
a_{k}=\frac{1}{T_{0}} \int_{0}^{T_{2}} x(t) e^{-j\left(\frac{2 \pi}{T_{0}}\right) k t} d t
$$

- Here's what the Fourier Transform looks like for continuous signals, CTFT:

$$
\begin{aligned}
& X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
& x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega
\end{aligned}
$$

Fourier Transforms vs. Fourier Series

- Note that $X(j \omega)$ is a Spectral Density function; that is, if $x(t)$ is voltage, then $X(j \omega)$ is volts/rad.
- Note in Fourier series analysis, a_{k} would also be volts is $x(t)$ is voltage.
- Note that $X(j \omega)$ is a continuous function of w and the limits of integration are over all values of t.
- Note in Fourier series analysis, a_{k} is a discrete function of $k f_{o}$ (and are $f_{o} \mathrm{~Hz}$ apart) and the limits of summation are over one period of $x(t)$
- A proof of how $X(j \omega)$ is formulated is beyond our scope but, briefly, $X(j \omega)$ can be obtained by starting with the Fourier Series of $x(t)$ (as if it were periodic) and letting f_{o} go to zero (i.e., T_{o} goes to infinity which make the second repetition of $x(t)$ move to infinity and makes $x(t)$ non-periodic.
- This would make the spectral components move closer to each other (infinitely closer - make $2 \pi k f_{o}$ a continuous variable ω)
- This will also make a_{k} approach zero but the ratio of a_{k} / f_{o}, which is a spectral density, remains finite.

Discrete-time Fourier Transform

- If this is the continuous-time Fourier Transform

$$
X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

- Then replacing t with $n T_{s}$ and the integral with a summation, then the Discrete-Time Fourier Transform, DTFT, can be shown to be :

$$
\begin{aligned}
& X(j \omega)=\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) e^{-j o n T_{s}} \\
& X\left(e^{j \hat{\omega}}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \hat{\omega} n}
\end{aligned}
$$

$$
\text { Recalling that } \hat{\omega}=\omega T_{s}
$$

Discrete-time Fourier Transform

- Note that this looks very similar to the Frequency Response of a system

$$
\begin{aligned}
& X\left(e^{i \theta}\right)=\sum_{n=-\infty}^{\infty} x\left[n e^{-j \hat{j o n}}\right. \\
& H\left(e^{j i \theta}\right)=\sum_{k=0}^{m} b_{k}-e^{-j \theta k}
\end{aligned}
$$

- As a matter of fact, the Fourier Transform of the Impulse response is the Frequency Response

$$
X\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} h[k] e^{-j \partial k}=\sum_{k=0}^{M} h[k] e^{-j \omega k}=H\left(e^{j \omega}\right)
$$

Discrete Fourier Transform

- The DTFT yield a spectrum which is a continuous function of $\hat{\omega}$
$X\left(e^{j \hat{\omega}}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \hat{\omega} n}$
- How do we get around this? Sample the spectrum.

When we sampled in the time domain, we replaced t by $n T_{s}$ where T_{s} is the distance (in time) between samples. Therefore to sample in the frequency domain we replace $\omega=2 \pi f$ by $2 \pi k f_{\Delta}$ where f_{Δ} is the distance (in frequency) between spectrum samples.
Note that since $\hat{\omega}=\omega T_{s}=\frac{\omega}{f_{s}} ; \hat{\omega}=\frac{\omega}{f_{s}} \Rightarrow \frac{2 \pi k f_{\Delta}}{f_{s}}$
$X\left(e^{j \hat{\omega}=\frac{2 \pi k f_{\Delta}}{f_{s}}}\right)=X[k]=\sum_{n=-\infty}^{\infty} x[n] e^{-j \frac{2 \pi k f_{\Delta}}{f_{s}}}$
-Let us assume that there are only L samples for time domain and N samples for the spectrum.
$X[k]=\sum_{n=0}^{L-1} x[n] e^{-j \frac{2 \pi k f_{\Lambda_{n}}}{f_{s}}}$

- Since f_{s} is the maxium frequency in the spectrum, then $f_{\Delta}=\frac{f_{s}}{N}$. This is just the resolution of the displaced spectrum. $X[k]=\sum_{n=0}^{L-1} x[n] e^{-j \frac{2 \pi k f_{\Delta}}{f_{s}}}=\sum_{n=0}^{L-1} x[n] e^{-j \frac{2 \pi k f_{s}}{f_{s} N}}=\sum_{n=0}^{L-1} x[n] e^{-j \frac{2 \pi}{N} k n}$
- This is called the Discrete Fourier Transform

Discrete Fourier Transform

- Since the computer can only process discrete functions of finite time, we have to define a new Fourier Transform called the Discrete Fourier Transform, DFT.
- Do not confuse this with the Discrete-time Fourier Transform, DTFT.
- It is defined as

$$
X(k)=\sum_{n=0}^{L-1} x[n] e^{-j \frac{2 \pi}{N} k n}
$$

where there are the L samples of $x[n]$, we evaluate the Spectrum over N frequencies, i.e., $0 \leq k \leq N-1$, and each frequency is f_{Δ} apart and chose $f_{\Delta}=\frac{f_{s}}{N}$
since f_{s} is the maximum frequency of the spectrum.
Therefore, $f_{\Delta}=\frac{f_{s}}{N}=\frac{1}{N T_{s}}$. We call this the resolution of the spectrum.

Discrete Fourier Transform

Let's start with the DTFT: $X\left(e^{j \hat{\omega}}\right)=\sum_{-\infty}^{\infty} x[n] e^{-j \hat{\omega n} n} ; \hat{\omega}=\omega T_{s}$
Let's divide the spectrum is into N frequencies equally spaced $f_{\Delta} \mathrm{Hz}$ apart (i.e., we are sampling the spectrum).

Therefore, let's define the k th sample in the frequency domain as $\omega_{k}=2 \pi f_{k}=2 \pi k f_{\Delta}$ where k goes from 1 to N.
When $k=N$, the highest frequency in the spectrum is $\omega_{N}=\frac{2 \pi N}{T_{o}}=2 \pi N f_{\Delta}=2 \pi f_{s}$.

Discrete Fourier Transform

If f_{s} meets the Nyquist rate, then the one-sided spectrum of $x[n]=X\left(e^{j \hat{\omega}}\right)$ must end at or below $\frac{f_{s}}{2}$.
Therefore, $\hat{\omega}_{k}=\omega_{k} T_{s}=2 \pi k f_{\Delta} T_{s}=\frac{2 \pi k f_{s}}{N} T_{s}=\frac{2 \pi k}{N}$.
Let's substitute $\hat{\omega}_{k}$ for $\hat{\omega}$ in the DTFT: $X\left(e^{j \hat{\omega}_{k}}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \hat{\omega}_{k} n}=\sum_{n=-\infty}^{\infty} x[n] e^{-j \frac{2 \pi k}{N} n}$
This sum will only be a function of k. In addition, let's assume that there are L samples of $x[n]$.
Then, we have the Discrete Fourier Transform, DFT as $X[k]=X\left(e^{j \hat{\omega}_{k}}\right)=\sum_{n=0}^{L-1} x[n] e^{-j \frac{2 \pi k}{N} n}$ BME 310 Biomedical Computing -
BME 310 Biomedical Computing -

Computer Processing

- Computers use the DFT to determine the spectrum of a signal $x(t)$.
- There are different computer algorithms for processing the DFT
- The most widely used algorithm is called the Fast Fourier Transform: FFT
- Note that the DFT is just like a discrete Fourier Series in the Frequency Domain

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j \frac{2 \pi}{T_{0} t}} \Leftrightarrow X[k]=\sum_{n=0}^{L-1} x[n] e^{-j \frac{2 \pi}{N} t n}
$$

How to Evaluate the DFT Method 1: Expand n first, then k.

- What is the DFT for the $x[n]=\{1,1,0,0\}$ assuming $N=4$

$$
\begin{array}{ll}
X[k]=\sum_{n=0}^{3} x[n] e^{-j \frac{2 \pi}{4} k n}=\sum_{n=0}^{3} x[n] e^{-j \frac{\pi}{2} k n} & X[0]=1+1 e^{-j \frac{\pi}{2} 0}=2 \\
=x[0] e^{-j \frac{\pi}{2} k 0}+x[1] e^{-j \frac{\pi}{2} k 1}+x[2] e^{-j \frac{\pi}{2} k 2}+x[3] e^{-j \frac{\pi}{2} k 3} & X[1]=1+1 e^{-j \frac{\pi}{2} 1}=1-j=\sqrt{2} e^{-j \frac{\pi}{4}} \\
=1+1 e^{-j \frac{\pi}{2} k}+0 e^{-j \frac{\pi}{2} k 2}+0 e^{-j \frac{\pi}{2} k 3} & X[2]=1+1 e^{-j \frac{\pi}{2} 2}=1+1 e^{-j \pi}=1-1=0 \\
=1+1 e^{-j \frac{\pi}{2} k} & X[3]=1+1 e^{-j \frac{\pi}{2} 3}=1+j=\sqrt{2} e^{j \frac{\pi}{4}} \\
X[k]=\left\{2, \sqrt{2} e^{-j \frac{\pi}{4}}, 0, \sqrt{2} e^{j \frac{\pi}{4}}\right\}
\end{array}
$$

Method 2: Expand k first, then n.

- What is the DFT for the $x[n]=\{1,1,0,0\}$ assuming $N=4$

$$
X[k]=\sum_{n=0}^{3} x[n] e^{-\frac{-2 \pi}{4} \frac{\pi}{4}}
$$

$$
X[0]=\sum_{n=0}^{3} x[n] e^{-j \frac{2 \pi}{4} \pi_{n}}
$$

$$
X[2]=\sum_{n=0}^{3} x[n] e^{-j \frac{2 \pi}{4} \frac{1}{4}}
$$

$$
=x[0] e^{-/ \pi 0}+x[1] e^{-/ \pi}+x[2] e^{-/ \pi z}+x[3] e^{-\beta 3 \pi}
$$

$$
\left.=x[0] e^{-j 0}+x[1]\right]^{-j 0}+x[2] e^{-j 0}+x[3] e^{-j 0}
$$

$$
=1+(-1)+0+0=0
$$

$$
=1+1+0+0=2
$$

$$
x[1]=\sum_{n=0}^{3} x[n] e^{-\frac{-2 \pi n}{4} \frac{1 n}{n}}
$$

$$
X[3]=\sum_{n=0}^{3} x[n] e^{-j \frac{2 \pi}{4} \frac{2}{4} n}
$$

$$
=x[0] e^{-j 0}+x[1] e^{-j_{2}^{\pi_{1}}}+x[2] e^{-j / \pi}+x[3] e^{-\frac{-j \pi}{2 \pi}}
$$

$$
=x[0] e^{-j \pi 0}+x[1] e^{-j \frac{\beta \pi}{2}}+x[2] e^{-\beta 3 \pi}+x[3] e^{-j \frac{9 \pi}{2}}
$$

$$
=1+(-j)+0+0=\sqrt{2} e^{-j \frac{\pi}{4}}
$$

$$
=1+j+0+0=\sqrt{2} e^{e^{\frac{\pi}{4}}}
$$

$$
X[k]=\left\{2, \sqrt{2} e^{-j \frac{\pi}{4}}, 0, \sqrt{2} e^{j \frac{\pi}{4}}\right\}
$$

Another Example: Method 1

- What is the DFT for the $x[n]=\{1,1,1,0,0,0\}$ assuming $N=6$

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{5} x[n] e^{-j \frac{2 \pi}{6} h n}=\sum_{n=0}^{5} x[n] e^{-j \frac{\pi}{3} k n} \\
& =x[0] e^{-j \frac{\pi}{3} k 0}+x[1] e^{-j \frac{\pi}{3} k 1}+x[2] e^{-j \frac{\pi}{3} k 2}+x[3] e^{-j \frac{\pi}{3} k 3}+x[4] e^{-j \frac{\pi}{3} k 4}+x[5] e^{-j \frac{\pi}{3} k 5} \\
& =1+e^{-j \frac{\pi}{3} k}+e^{-j \frac{\pi}{3} k 2}+0 e^{-j \frac{\pi}{3} k 3}+0 e^{-j \frac{\pi}{3} k 4}+0 e^{-j \frac{\pi}{3} k 5} \\
& =1+e^{-j \frac{\pi}{3} k}+e^{-j \frac{\pi}{3} k 2} \\
& X[0]=1+e^{-j \frac{\pi}{3} 0}+e^{-j \frac{\pi}{3} \frac{\pi}{3}}=3 \\
& X[1]=1+e^{-j \frac{\pi}{3}}+e^{-j \frac{\pi}{3} 2}=1+.5-j 0.86-.5-j 0.86=1-j 2(0.86)=2 e^{-j \frac{\pi}{3}} \\
& X[2]=1+e^{-j \frac{\pi}{3}}+e^{-j \frac{\pi}{3} 4}=1-.5-j 0.86+-.5+j 0.86=0 \\
& X[3]=1+e^{-j \frac{\pi}{3} 3}+e^{-j \frac{\pi}{3} 6}=1-1+1=1 \\
& X[4]=1+e^{-j \frac{\pi}{3} 4}+e^{-j \frac{\pi}{3} 8}=0 \\
& X[5]=1+e^{-j \frac{\pi}{3} 5}+e^{-j \frac{\pi}{3} 10}=1+.5+j 0.86-.5+j 0.86=2 e^{j \frac{\pi}{3}}
\end{aligned}
$$

Method 2

- What is the DFT for the $x[n]=\{1,1,1,0,0,0\}$ assuming $N=6$

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{5} x[n] e^{-j \frac{2 \pi}{6} k n}=\sum_{n=0}^{2} e^{-j \frac{\pi}{3} k n}=1+e^{-j \frac{\pi}{3} k 1}+e^{-j \frac{\pi}{3} k 2}=1+e^{-j \frac{\pi}{3} k}+e^{-j \frac{2 \pi}{3} k} \\
& X[0]=1+e^{-j \frac{\pi}{3} 0}+e^{-j \frac{2 \pi}{3} 0}=3 \\
& X[1]=1+e^{-j \frac{\pi}{3} 1}+e^{-j \frac{2 \pi}{3} 1}=1+e^{-j \frac{\pi}{3}}+e^{-j \frac{2 \pi}{3}}=2 e^{-j \frac{\pi}{3}} \\
& X[2]=1+e^{-j \frac{\pi}{3} 2}+e^{-j \frac{2 \pi}{3} 2}=1+e^{-j \frac{2 \pi}{3}}+e^{-j \frac{4 \pi}{3}}=0 \\
& X[3]=1+e^{-j \frac{\pi}{3} 3}+e^{-j \frac{2 \pi}{3} 3}=1+e^{-j \pi}+e^{-j 2 \pi}=1 \\
& X[4]=1+e^{-j \frac{\pi}{3} 4}+e^{-j \frac{2 \pi}{3} 4}=1+e^{-j \frac{4 \pi}{3}}+e^{-j \frac{8 \pi}{3}}=0 \\
& X[5]=1+e^{-j \frac{\pi}{3} 5}+e^{-j \frac{2 \pi}{3} 5}=1+e^{-j \frac{5 \pi}{3}}+e^{-j \frac{10 \pi}{3}}=2 e^{j \frac{\pi}{3}}
\end{aligned}
$$

What is the right hand side of the FFT.vi spectrum?

- Note that N and L are usually taken to be the same in order to easily calculate $X[k]$.
- Note that due to this fact $X[N-k]=X[-k]=X^{*}[k]$

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{j \pi}{N} / n} \\
& X[N-k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N}(N-k) n}=\sum_{n=0}^{N-1} x[n] e^{-\frac{j \pi}{N} N n} e^{j \frac{2 \pi}{N} / n} \\
& =\sum_{n=0}^{N-1} x[n] e^{-j 2 m} e^{\frac{2 \pi}{N} \frac{\pi}{N} n}=\sum_{n=0}^{N-1} x[n] e^{j \frac{j \pi}{N} k n} \\
& =X[-k]=X^{*}[k]
\end{aligned}
$$

- Therefore, $X[-k]$ will show up as $X[N-k]$

Take a look at our Example

- What is the DFT for the $x[n]=\{1,1,0,0\}$ assuming $N=4$

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{3} x[n] e^{-\frac{2 \pi}{4} / n} \\
& X[-1]=\sum_{n=0}^{3} x[n] e^{j \frac{j 2 \pi}{4} \frac{1 n}{}} \\
& =x[0] e^{-j 0}+x[1] e^{j \frac{\pi_{1}}{2}}+x[2] e^{j \pi}+x[3] e^{\frac{j 3 \pi}{2}} \\
& =1+(j)+0+0=\sqrt{2} e^{j \frac{\pi}{4}} \\
& =X[4-1]=X[3]
\end{aligned}
$$

Another Example

Here we have a signal whose digitized frequency is $\hat{\omega}_{o}$
$x_{1}[n]=e^{j\left(\widehat{\omega}_{o} n+\phi\right)} \quad$ for $n=0,1,2, \ldots, N-1$

We now want to obtain the spectrum of our signal using the DFT. If the DFT is done correctly, we would expect a the spectrum to show a single component at $\hat{\omega}_{o}$
$X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}=\sum_{n=0}^{N-1} e^{j\left(\hat{\omega}_{0} n+\phi\right)} e^{-j(2 \pi / N) k n}$
$=e^{j \phi} \sum_{n=0}^{N-1} e^{-j\left[(2 \pi k / N)-\hat{\omega}_{0}\right] n}$

Another Example Continued

Using the partial sum of a geometric series: $\sum_{k=0}^{L-1} \alpha^{k}=\frac{1-\alpha^{L}}{1-\alpha}$

$$
\begin{aligned}
& X[k]=e^{j \phi}\left(\frac{1-e^{-j\left[(2 \pi k / N)-\hat{\omega}_{o}\right] N}}{\left.1-e^{-j\left[(2 \pi k / N)-\hat{\omega}_{o}\right]}\right)=e^{j \phi}\left(\frac{e^{-j\left[(2 \pi k / N)-\hat{\omega}_{o}\right] N / 2}\left(e^{+j\left[(2 \pi k / N)-\hat{\omega}_{o}\right] N / 2}-e^{-j\left[(2 \pi k / N)-\hat{\omega}_{o}\right] N / 2}\right)}{e^{-j\left[(2 \pi k / N)-\hat{\omega}_{o}\right] / 2}\left(e^{j\left[(2 \pi k / N)-\hat{\omega}_{o}\right] / 2}-e^{-j\left[(2 \pi k / N)-\hat{\omega}_{o}\right] / 2}\right)}\right)} \begin{array}{l}
=e^{i \phi}\left(\frac{e^{-j\left[(2 \pi k / N)-\hat{\omega}_{o}\right](N-1) / 2} \sin \left(\left[(2 \pi k / N)-\hat{\omega}_{o}\right] N / 2\right)}{\sin \left(\left[(2 \pi k / N)-\hat{\omega}_{o}\right] / 2\right)}\right) \\
=e^{i \phi} e^{-j\left[(2 \pi k / N)-\hat{\omega}_{o}\right](N-1) / 2} \frac{\sin \left(\left[(2 \pi k / N)-\hat{\omega}_{o}\right] N / 2\right)}{\sin \left(\left[(2 \pi k / N)-\hat{\omega}_{o}\right] / 2\right)}=e^{j \phi} e^{-j\left[(2 \pi k / N)-\hat{\omega}_{o}(N-1) / 2\right.} D_{N}\left(e^{+j\left[(2 \pi k / N)-\hat{\omega}_{o}\right] N}\right)
\end{array}\right.
\end{aligned}
$$

where
$D_{N}\left(e^{+j\left[(2 \pi k / N)-\hat{\omega}_{o}\right] N}\right)=\frac{\sin \left(\left[(2 \pi k / N)-\hat{\omega}_{o}\right] N / 2\right)}{\sin \left(\left[(2 \pi k / N)-\hat{\omega}_{o}\right] / 2\right)}$, the Dirichlet function

Another Example Continued

$$
\begin{aligned}
& X[k]=e^{j \phi} e^{-j\left[(2 \pi k / N)-\hat{\omega}_{o}\right](N-1) / 2} \frac{\sin \left(\left[(2 \pi k / N)-\hat{\omega}_{o}\right] N / 2\right)}{\sin \left(\left[(2 \pi k / N)-\hat{\omega}_{o}\right] / 2\right)} \\
& \hat{\omega}_{o}=2 \pi k_{o} / N \Rightarrow \omega_{0}=\hat{\omega}_{o} f_{s}=\frac{2 \pi k_{o}}{N} f_{s} \Rightarrow f_{0}=\frac{k_{o}}{N} f_{s}
\end{aligned}
$$

Case 1: k_{o} is NOT an integer;
that is, $\hat{\omega}_{o}$ is NOT a multiple of $2 \pi / N$ and therefore f_{0} is NOT a multiple of f_{s}, which is the resolution of the sampled spectrum obtained using DFT.
$\therefore k-k_{o} \neq 0$ for any value of k
$=e^{j \phi} e^{-j\left[(2 \pi k / N)-2 \pi k_{o} / N\right](N-1) / 2} \frac{\sin \left(\left[(2 \pi k / N)-2 \pi k_{o} / N\right] N / 2\right)}{\sin \left(\left[(2 \pi k / N)-2 \pi k_{o} / N\right] / 2\right)}$
$=e^{j \phi} e^{-j\left[2 \pi / N\left(k-k_{o}\right)\right](N-1) / 2} \frac{\sin \left(\left[2 \pi / N\left(k-k_{o}\right)\right] N / 2\right)}{\sin \left(\left[2 \pi / N\left(k-k_{o}\right)\right] / 2\right)}$
$=e^{j \phi} e^{-j\left[2 \pi / N\left(k-k_{o}\right)(N-1) / 2\right.} \frac{\sin \left[\pi\left(k-k_{o}\right)\right]}{\sin \left[\pi / N\left(k-k_{o}\right)\right]}$; for all k

Two Cases for our Example

say let $k_{o}=2.5$ and $N=40 ; \hat{\omega}_{o}=\frac{2 \pi(2.5)}{40}=2.5 \frac{\pi}{20}=\frac{\pi}{8}=0.125 \pi$
If we do this, the figure below shows that do not have a single component at $\hat{\omega}_{o}$

$$
\begin{aligned}
& k_{o}=2.5 ; N=40 \\
& |X[k]|=\left|\frac{\sin ([\pi(k-2.5)])}{\sin ([\pi / 40(k-2.5)])}\right| \\
& |X[0]|=\left|\frac{\sin ([\pi(0-2.5)])}{\sin ([\pi / 40(0-2.5)])}\right|=5.1 \\
& |X[1]|=\left|\frac{\sin ([\pi(1-2.5)])}{\sin ([\pi / 40(1-2.5)])}\right|=\left|\frac{\sin ([\pi(-1.5)])}{\sin ([\pi / 40(-1.5)])}\right|=8.5 \\
& |X[2]|=\left|\frac{\sin ([\pi(2-2.5)])}{\sin ([\pi / 40(2-2.5)])}\right|=\left|\frac{\sin ([\pi(-0.5)])}{\sin ([\pi / 40(-0.5)])}\right|=25.5 \\
& |X[3]|=\left|\frac{\sin ([\pi(3-2.5)])}{\sin ([\pi / 40(3-2.5)])}\right|=\left|\frac{\sin ([\pi(0.5)])}{\sin ([\pi / 40(0.5)])}\right|=25.5 \\
& |X[4]|=\left|\frac{\sin ([\pi(4-2.5)])}{\sin ([\pi / 40(4-2.5)])}\right|=\left|\frac{\sin ([\pi(1.5)])}{\sin ([\pi / 40(1.5)])}\right|=8.5 \\
& \quad \vdots \\
& \text { etc. }
\end{aligned}
$$

Another Example Continued

$$
X[k]=e^{j \phi} e^{-j\left[(2 \pi k / N)-\hat{\omega}_{o}(N-1) / 2\right.} \frac{\sin \left(\left[(2 \pi k / N)-\hat{\omega}_{o}\right] N / 2\right)}{\sin \left(\left[(2 \pi k / N)-\hat{\omega}_{o}\right] / 2\right)}
$$

Case 2: k_{o} is an integer; that is, $\hat{\omega}_{o}$ is an integer multiple of $2 \pi / N$ and f_{0} is a multiple of f_{s}. the resolution of the sampled spectrum obtained from the DFT.
$\therefore k-k_{o}$ will be a non-zero integer $=l$ except when $k=k_{o}$
$=e^{j \phi} e^{-j\left[(2 \pi k / N)-2 \pi k_{o} / N\right](N-1) / 2} \frac{\sin \left(\left[(2 \pi k / N)-2 \pi k_{o} / N\right] N / 2\right)}{\sin \left(\left[(2 \pi k / N)-2 \pi k_{o} / N\right] / 2\right)}$
$=e^{j \phi} e^{-j\left[2 \pi / N\left(k-k_{o}\right)\right](N-1) / 2} \frac{\sin \left(\left[2 \pi / N\left(k-k_{o}\right)\right] N / 2\right)}{\sin \left(\left[2 \pi / N\left(k-k_{o}\right)\right] / 20\right.}$
$=e^{j \phi} e^{-j\left[2 \pi / N\left(k-k_{o}\right)\right](N-1) / 2} \frac{\sin \left[\pi\left(k-k_{o}\right)\right]}{\sin \left[\pi / N\left(k-k_{o}\right)\right]}=e^{j \phi} e^{-j[2 \pi l / N](N-1) / 2} \frac{\sin [\pi l]}{\sin [\pi l / N]}$
$=0 \quad k \neq k_{o}$ since the $\sin (\pi l)=0$
$=N e^{i \phi} \quad k=k_{o}(l=0)$ since $X\left[k_{o}\right]=e^{j \phi} 1 \frac{0}{0}$;
using L'Hopital's rule $\lim _{1 \rightarrow 0} \frac{\sin [\pi l]}{\sin [\pi l / N]}=\lim _{1 \rightarrow 0} \frac{\pi \cos [\pi l]}{\frac{\pi}{N} \cos [\pi l / N]}=N$

Two Cases for our Example

Case 2: when the fundamental frequency of our signal is a multiple of $\frac{f_{s}}{N}$,
which is the resolution of the sampled spectrum obtained from the DFT.
that is say $k_{o}=2$ and $N=40 ; \hat{\omega}_{o}=\frac{2 \pi(2)}{40}=2 \frac{\pi}{20}=0.1 \pi$
If we do this, the figure below shows that we have a single component at $\hat{\omega}_{o}$ or at $k=k_{o}=2$.
In order words: $X[k]=N e^{j \phi} \delta(k-2)$ which corresponds to $2 \times 2 \pi / 40=0.1 \pi=\hat{\omega}_{o}$

Time Domain \& Frequency Domain

- Time Domain

Time Domain \& Frequency Domain

Time Domain

- Impulse Response

| |
| :--- | :--- |
| LTI System |
| Input |
| Impulse signal |
| CT: $\delta(t)$ |
| DT: $\delta[n]$ |\quad| DT: Differential Eq |
| :--- |
| DT: $a \ddot{y}(t)+b \dot{y}(t)+c y(t)=d \dot{x}(t)+e x(t)$ |
| DT: $y[n]=\sum_{k}^{M} b_{k} x[n-k]$ |\quad| Output |
| :--- |
| Impulse |
| Response |
| CT: $h(t)$ |
| DT: $h[n]$ |

Time Domain \& Frequency Domain

- Time Domain

Time Domain \& Frequency Domain

- Frequency Domain

Fourier Transform Signals and Systems

Signals

- The FT of a signal transforms it from the time domain, $x(t)$ or $x[n]$, to the frequency domain to yield its spectral representation, $X(j \omega)$ or $X[k]$.
- The inverse FT transforms the signal's spectrum, $X(j \omega)$ or $X[k]$, in the frequency domain to the time domain, $x(t)$ or $x[n]$.
- The FT can also be applied to systems.

Systems

- The FT of a system's impulse response, $h(t)$ or $h[n]$, transforms it into the frequency response, $H(j \omega)$ or $H[k]$.
- The inverse FT transforms a system's frequency response, $H(j \omega)$ or $H[k]$ to the impulse response, $h(t)$ or $h[n]$.
- Note that the impulse response is really the output signal of a system when the input signal is the impulse function, $\delta(t)$ or $\delta[n]$.

Fourier Transform Signals and Systems The Math is the Same

Signals

- For continuous signals, its spectral representation is:

$$
X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

- For discrete signals, its spectral representation is discrete frequency function of k and is calculated as:

$$
X[k]=\sum_{n=0}^{L-1} x[n] e^{-j \frac{2 \pi k}{N} n}
$$

Systems

- For systems which process continuous signals, the frequency response is calculated as:

$$
H(j \omega)=\int_{-\infty}^{\infty} h(t) e^{-j \omega t} d t
$$

- For systems which process discrete signals, the frequency response is a continuous frequency function of $\hat{\omega}$ and is calculated as:

$$
H(j \hat{\omega})=H\left(e^{j \hat{\omega}}\right)=\sum_{k=0}^{M-1} h[k] e^{-j \hat{\omega} k}=\sum_{k=0}^{M-1} b_{k} e^{-j \hat{\omega} k}
$$

Fourier Transform Signals and Systems The Math is the Same

Frequency Response is a continuous function

$$
\begin{aligned}
& H\left(e^{j \hat{\omega}}\right)=\sum_{k=0}^{M-1} b_{k} e^{-j \hat{\omega} k} \\
& b_{k}=\{1,0,0,1\} \\
& H\left(e^{j \hat{\omega}}\right)=\sum_{k=0}^{3} b_{k} e^{-j \hat{\omega} k}=1+0+0+e^{-j \hat{\omega} 3}=1+e^{-j \hat{\omega} 3} \\
& =e^{-j \frac{3 \hat{\omega}}{2}}\left(e^{-j \frac{3 \hat{\omega}}{2}}+e^{j \frac{3 \hat{\omega}}{2}}\right)=2 \cos \left(\frac{3 \hat{\omega}}{2}\right) e^{-j \frac{3 \hat{\omega}}{2}}
\end{aligned}
$$

Fourier Transform Signals and Systems The Math is the Same

Signal Spectral Density is a discrete function

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{L-1} x[n] e^{-j \frac{2 \pi k}{N} n} \\
& x[n]=\{1,0,0,1\} \\
& X[k]=\sum_{n=0}^{3} x[n] e^{-j \frac{2 \pi k}{4} n}=1+0+0+e^{-j \frac{\pi k}{2} 3}=1+e^{-j \frac{3 \pi k}{2}} \\
& X[k]=1+e^{-j \frac{3 \pi k}{2}} \\
& X[0]=1+e^{-j \frac{3 \pi}{2} \pi}=2 \\
& X[1]=1+e^{-j \frac{3 \pi}{2}}=1+j=\sqrt{2} e^{j \frac{\pi}{4}} \\
& X[2]=1+e^{-j \frac{3 \pi}{2}}=1-1=0 \\
& X[3]=1+e^{-j \frac{3 \pi}{2} 3}=1+e^{-j \frac{\pi}{2}}=1-j=\sqrt{2} e^{-j \frac{\pi}{4}}
\end{aligned}
$$

OR

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{3} x[n] e^{-j \frac{2 \pi k}{4} n}=1+0+0+e^{-j \frac{\pi k}{2} 3}=1+e^{-j \frac{3 \pi k}{2}} \\
& =e^{-j \frac{3 \pi k}{4}}\left(e^{j \frac{3 \pi k}{4}}+e^{-j \frac{3 \pi k}{4}}\right)=2 \cos \left(\frac{3 \pi k}{4}\right) e^{-j \frac{3 \pi k}{4}} \\
& X[k]=2 \cos \left(\frac{3 \pi k}{4}\right) e^{-j \frac{3 \pi k}{4}} \\
& X[0]=2 \cos \left(\frac{3 \pi 0}{4}\right) e^{-j \frac{3 \pi 0}{4}}=2 \\
& X[1]=2 \cos \left(\frac{3 \pi}{4}\right) e^{-j \frac{3 \pi}{4}}=-\sqrt{2} e^{-j \frac{3 \pi}{4}}=\sqrt{2} e^{-j \frac{3 \pi}{4}} e^{j \pi}=\sqrt{2} e^{j \frac{\pi}{4}} \\
& X[2]=2 \cos \left(\frac{3 \pi}{2}\right) e^{-j \frac{3 \pi}{2}}=0 \\
& X[3]=2 \cos \left(\frac{9 \pi}{4}\right) e^{-j \frac{9 \pi}{4}}=2 \cos \left(\frac{\pi}{4}\right) e^{-j \frac{\pi}{4}}=\sqrt{2} e^{-j \frac{\pi}{4}}
\end{aligned}
$$

Time Domain to Frequency Domain Transformations

Time Domain		Transformation Type	Frequency Domain	
Time Signal Type	Computer processing \& storage		Frequency Spectrum Type	Computer processing \& storage
Periodic \& Continuous $x(t)$	No	Fourier Series $a_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) e^{-j \frac{2 \pi k}{T} t} d t$	Discrete Spectrum a_{k}	Yes
Non-Periodic \& Continuous $x(t)$	No	Continuous Time Fourier Transform CTFT $X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$	Continuous Spectral Density $X(j \omega)$	No
Discrete $x[n]$	Yes	Discrete Time Fourier Transform $X\left(e^{j \hat{\omega}}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \hat{\omega} n}$	Continuous Spectral Density $X\left(e^{j \hat{\omega}}\right)$	No
Discrete $x[n]$	Yes	Discrete Fourier Transform DFT $X[k]=\sum_{n=-\infty}^{\infty} x[n] e^{-j \frac{2 \pi}{N} n k}$	Discrete Spectrum $X[k]$	Yes

BME 310 Biomedical Computing -

Homework

- Exercises:
- 13.2-13.4, 13.6 - 13.8
- Problems:
- 13.1 Use Matlab to plot the spectrum; submit your code
- 13.4, 13.5, 13.6

