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Computing

Lecture #13
Chapter 13
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What Is this Course All About ?

• To Gain an Appreciation of the 
Various Types of Signals and Systems 

• To Analyze The Various Types of 
Systems

• To Learn the Skills and Tools needed 
to Perform These Analyses.

• To Understand How Computers 
Process Signals and Systems
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What did we learn so far
• Learned about Signals and Systems

– Continuous-time vs Discrete-time
– Sinusoids
– Complex Exponentials
– Periodic Signals

• How to analyze them
– Sampling
– Time Domain
– Frequency Domain

• How to Process Them
– Filters
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What do we still have left to learn

• How does a Computer handle signals?
– Sinusoids
– Bio Med Signals

• The Computer can’t handle Continuous-time 
signals

• The Computer must first sample the signal
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Some more Background

• We saw that the Fourier Series can be used to 
handle any periodic signal since it can be 
decomposed into frequency components.

• But most signals are not periodic
– ECG, EEG, EMG, etc.
– Voice Signals
– Video Signals
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Fourier Transform 
• We can handle non-periodic signals in a similar 

fashion as periodic signals
• That is, we can decompose them into frequency 

components
• However, the way we get there is different than the 

way we use for periodic signals
• Periodic signal frequency decomposition use the 

Fourier Series which generates a frequency spectrum
• Non-periodic signal frequency decomposition use the 

Fourier Transform which generates a frequency 
DENSITY spectrum.
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Fourier Analysis and Fourier 
Transform

• Recall this is Fourier Series 

• Here’s what the Fourier Transform looks like for 
continuous signals, CTFT:
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Fourier Transforms vs. Fourier Series
• Note that X(jω) is a Spectral Density function; that is, if x(t) is 

voltage, then X(jω) is volts/rad. 
– Note in Fourier series analysis, ak would also be volts is x(t) is voltage.

• Note that X(jω) is a continuous function of w and the limits of 
integration are over all values of t.
– Note in Fourier series analysis, ak is a discrete function of  kfo (and are  

fo Hz apart) and the limits of summation are over one period of x(t)
• A proof of how X(jω) is formulated is beyond our scope but, 

briefly, X(jω) can be obtained by starting with the Fourier 
Series of x(t) (as if it were periodic) and letting fo go to zero 
(i.e., To goes to infinity which make the second repetition of 
x(t) move to infinity and makes x(t) non-periodic.  
– This would make the spectral components move closer to each other 

(infinitely closer – make 2πkfo a continuous variable ω)
– This will also make ak approach zero but the ratio of ak/fo, which is a 

spectral density, remains finite.
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Discrete-time Fourier Transform
• If this is the continuous-time Fourier Transform 

• Then replacing t with nTs and the integral with a 
summation, then the Discrete-Time Fourier 
Transform, DTFT, can be shown to be :
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Discrete-time Fourier Transform
• Note that this looks very similar to the Frequency 

Response of a system

• As a matter of fact, the Fourier Transform of the 
Impulse response is the Frequency Response

ˆ ˆ

ˆ ˆ

0

( ) [ ]

 ( )

j j n

n
M

j j k
k

k

X e x n e

H e b e

 

 


















)(][][)( ˆ

0

ˆˆˆ  j
M

k

kj

k

kjj eHekhekheX  











Discrete Fourier Transform
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 The DTFT yield a spectrum which is a continuous function of ̂

X (e ĵ )  x[n]e ĵn

n




 How do we get around this?  Sample the spectrum.

When we sampled in the time domain, we replaced t  by nTs  where Ts  is the distance (in time) between samples.
Therefore to sample in the frequency domain we replace     2 f  by 2kf  where f  is the distance (in frequency) 
between spectrum samples.

Note that since ̂  Ts 

fs

;̂ 

fs


2kf

fs

X (e
ĵ  

2kf
fs )  X [k]  x[n]e

 j
2kf

fs
n

n




Let us assume that there are only L samples for time domain and N  samples for the spectrum.

X [k]  x[n]e
 j

2kf
fs

n

n0

L1



 Since fs  is the maxium frequency in the spectrum, then  f=
fs

N
.   This is just the resolution of the displaced spectrum.

X [k]  x[n]e
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 This is called the Discrete Fourier Transform
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Discrete Fourier Transform
• Since the computer can only process discrete functions of finite time, we 

have to define a new Fourier Transform called the Discrete Fourier 
Transform, DFT.
– Do not confuse this with the Discrete-time Fourier Transform, DTFT.

• It is defined as

X (k)  x[n]e
 j 2

N
kn

n0

L1


where there are the L samples of x[n], 
we evaluate the Spectrum over N  frequencies, i.e., 0  k  N 1,

and each frequency is f  apart and chose f=
fs

N
 

since fs  is the maximum frequency of the spectrum.

Therefore, f=
fs

N


1
NTs

.  We call this the resolution of the spectrum.
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Discrete Fourier Transform

Let's start with the DTFT: X (e ĵ )  x[n]e ĵn





 ;̂ Ts

Let's divide the spectrum is into N  frequencies equally spaced  f  Hz apart 
(i.e., we are sampling the spectrum).   

Therefore, let's define the kth sample in the frequency domain as  k  2 fk  2kf
where k  goes from 1 to N .

When k  N ,  the highest frequency in the spectrum is  N 
2N

To

=2Nf=2 fs  .

2πfΔ 2(2πfΔ) 3(2πfΔ) N(2πfΔ)
=2πfs

. . .
ω
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Discrete Fourier Transform

If  fs  meets the Nyquist rate, then the one-sided spectrum of x[n] = X (e ĵ ) must end at or below 
fs

2
.

Therefore,  ̂ k  kTs  2kfTs 
2kfs

N
Ts 

2k
N

.

Let's substitute ̂ k  for ̂  in the DTFT: X (e ĵk )  x[n]e ĵkn

n



  x[n]e
 j 2k

N
n

n




This sum will only be a function of k.  In addition, let's assume that there are L samples of x[n].

Then, we have the Discrete Fourier Transform, DFT as X [k]  X (e ĵk )  x[n]e
 j 2k

N
n

n0

L1



2πfΔ 2(2πfΔ) 3(2πfΔ) N(2πfΔ)

. . .
ω

2π fs /N

. . .

ω2(2π fs /N) 3(2π fs /N) N(2π fs /N)=2π fs

2π /N

. . .

2(2π /N) 3(2π /N) N(2π /N)=2π ̂
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Computer Processing

• Computers use the DFT to determine the 
spectrum of a signal x(t).

• There are different computer algorithms for 
processing the DFT
– The most widely used algorithm is called the Fast 

Fourier Transform: FFT

• Note that the DFT is just like a discrete Fourier 
Series in the Frequency Domain
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How to Evaluate the DFT
Method 1: Expand n first, then k.

• What is the DFT for the x[n]={1, 1, 0, 0} assuming N=4
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Method 2: Expand k first, then n.
• What is the DFT for the x[n]={1, 1, 0, 0} assuming N=4
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Another Example: Method 1
• What is the DFT for the x[n]={1, 1, 1, 0, 0, 0} assuming N=6
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Method 2
• What is the DFT for the x[n]={1, 1, 1, 0, 0, 0} assuming N=6
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What is the right hand side of the 
FFT.vi spectrum?

• Note that N and L are usually taken to be the same in order to 
easily calculate X[k].

• Note that due to this fact X[N - k]=X[-k]=X*[k]

• Therefore,  X[-k] will show up as X[N – k]
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Take a look at our Example
• What is the DFT for the x[n]={1, 1, 0, 0} assuming N=4
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Another Example

ˆ( )
1

ˆHere we have a signal whose digitized frequency is 

[ ]     for 0, 1, 2, , 1

We now want to obtain the spectrum of our signal using
the DFT.  If the DFT is done correctly, we would ex

o

o
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Another Example Continued

Using the partial sum of a geometric series:  k 
1 L

1k0

L1



X [k]  e j (1 e j[(2k N )̂o ]N

1 e j[(2k N )̂o ] )  e j (e j[(2k N )̂o ]N /2 (e j[(2k N )̂o ]N /2  e j[(2k N )̂o ]N /2 )
e j[(2k N )̂o ]/2 (e j[(2k N )̂o ]/2  e j[(2k N )̂o ]/2 )

)

 e j (
e j[(2k N )̂o ]( N1)/2 sin([(2k N ) ̂o ]N / 2)

sin([(2k N ) ̂o ] / 2)
)

 e je j[(2k N )̂o ]( N1)/2 sin([(2k N ) ̂o ]N / 2)
sin([(2k N ) ̂o ] / 2)

 e je j[(2k N )̂o ]( N1)/2DN (e j[(2k N )̂o ]N )

where 

DN (e j[(2k N )̂o ]N ) 
sin([(2k N ) ̂o ]N / 2)
sin([(2k N ) ̂o ] / 2)

,  the Dirichlet function
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Another Example Continued
ˆ[(2 ) ]( 1)/2

0 0

0

ˆsin([(2 ) ] / 2)[ ]
ˆsin([(2 ) ] / 2)

2ˆ ˆ2

Case 1:  is NOT an integer; 
ˆthat is,  is NOT a multiple of 2  and therefore  is NOT a mu
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Two Cases for our Example
2 (2.5)ˆsay let 2.5 and 40; 2.5 0.125

40 20 8
ˆIf we do this, the figure below shows that do not have a single component at 
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Another Example Continued
ˆ[(2 ) ]( 1)/2

0

ˆsin([(2 ) ] / 2)[ ]
ˆsin([(2 ) ] / 2)

ˆCase 2: is an integer; that is,  is an integer multiple of 2  and  is a multiple of .
the resolution of the sampled spectr
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Two Cases for our Example
Case 2: when the fundamental frequency of our signal is a multiple of ,

which is the resolution of the sampled spectrum obtained from the DFT.
2 (2)ˆthat is  say 2 and 40;  2 0.1

40 20
If we 

s

o o

f
N

k N       

ˆdo this, the figure below shows that we have a single component at  or at 2.
ˆIn order words: [ ] ( 2) which corresponds to 2 2 / 40 0.1

o o
j

o

k k

X k Ne k
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Time Domain & Frequency 
Domain

• Time Domain
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LTI System
CT: Differential Eq
DT: Difference Eq



CT: ay(t) by(t) cy(t)  d x(t) ex(t)

DT: y[n]  bk x[n k]
k0

M



Input 
Time signal
CT: x(t)
DT: x[n]

Output 
Time Signal
CT: y(t)
DT: y[n]



Time Domain & Frequency 
Domain

Time Domain 
• Impulse Response
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LTI System
CT: Differential Eq
DT: Difference Eq

CT: ay(t)  by(t)  cy(t)  d x(t) ex(t)

DT: y[n]  bk x[n  k]
k0

M



Input 
Impulse signal
CT: δ(t)
DT: δ[n]

Output 
Impulse 
Response
CT: h(t)
DT: h[n]



Time Domain & Frequency 
Domain

• Time Domain
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LTI System
CT: Differential Eq
DT: Difference Eq

CT: ay(t)  by(t)  cy(t)  d x(t) ex(t)

DT: y[n]  bk x[n  k]
k0

M



Input 
Time signal
CT: x(t)
DT: x[n]

Output 
Time signal
CT: y(t)
DT: y[n]

Convolution
CT: ( ) ( ) ( )

DT: [ ] [ ] [ ]
l

y t x h t d

y n x l h n l

  








 

 







Time Domain & Frequency 
Domain

• Frequency Domain
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LTI System
Frequency Response

Input 
Signal Spectrum

Output 
Signal Spectrum

CT: H ( j )  h(t)e j t dt




  M ( )e j ( )

DT: H (e ĵ )  bk
k0

M

 e ĵk  h[k]
k0

M

 e ĵk

                    M (̂ )e j (̂ )
CT: x(t)  A0  Ak cos(2 fkt k )

k0

M



DT: x[n]  A0  Ak cos( kTsnk )
k0

M



             A0  Ak cos(̂ knk )
k0

M


                   

CT: y(t)  A0M (0)e j (0)  Ak M (2 fk )cos(2 fkt k  (2 fk )
k0

M

 )

DT: y[n]  A0M (0)e j (0)  Ak M (̂ k )cos(̂ kn k  (̂ k ))
k0

M


                   



Fourier Transform 
Signals and Systems
Signals

• The FT of a signal transforms it 
from the time domain, x(t) or x[n], 
to the frequency domain to yield 
its spectral representation, X(jω) 
or X[k]. 

• The inverse FT transforms the 
signal’s spectrum, X(jω) or X[k], 
in the frequency domain to the 
time domain, x(t) or x[n].

• The FT can also be applied to 
systems.

Systems
• The FT of a system’s impulse 

response, h(t) or h[n], transforms 
it into the frequency response, 
H(jω) or H[k]. 

• The inverse FT transforms a 
system’s frequency response, 
H(jω) or H[k] to the impulse 
response, h(t) or h[n].

• Note that the impulse response is 
really the output signal of a 
system when the input signal is 
the impulse function, δ(t) or δ[n].  
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Fourier Transform 
Signals and Systems
The Math is the Same

Signals
• For continuous signals, its spectral 

representation is:

• For discrete signals, its spectral 
representation is discrete 
frequency function of k and is 
calculated as:

Systems
• For systems which process 

continuous signals, the frequency 
response is calculated as: 

• For systems which process 
discrete signals, the frequency 
response is a continuous 
frequency function of      and is 
calculated as:
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H ( j )  h(t)e jt dt






H ( ĵ )  H (e ĵ )  h[k]e ĵk

k0

M1

  bke
 ĵk

k0

M1



X( j )  x(t)e j t dt






X[k]  x[n]e
 j 2k

N
n

n0

L1



̂



Fourier Transform 
Signals and Systems
The Math is the Same
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Frequency Response is a continuous function
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Fourier Transform 
Signals and Systems
The Math is the Same
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Signal Spectral Density is a discrete function
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Time Domain to Frequency Domain 
Transformations

Time Domain
Transformation Type

Frequency Domain
Time Signal 

Type
Computer 

processing & 
storage

Frequency 
Spectrum 

Type

Computer 
processing & 

storage

Periodic & 
Continuous

x(t)
No

Fourier Series Discrete
Spectrum

ak

Yes

Non-Periodic & 
Continuous

x(t)
No

Continuous Time Fourier Transform
CTFT

Continuous 
Spectral Density

X(jω)
No

Discrete

x[n]
Yes

Discrete Time Fourier Transform
DTFT

Continuous 
Spectral Density No

Discrete

x[n]
Yes

Discrete Fourier Transform
DFT

Discrete
Spectrum

X[k]

Yes

ak 
1
T

x(t)e
 j 2 k

T
t

T /2

T /2

 dt

X( j )  x(t)e j t dt
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Homework

• Exercises:
– 13.2- 13.4, 13.6 – 13.8

• Problems:
– 13.1 Use Matlab to plot the spectrum; submit your 

code
– 13.4, 13.5, 13.6


