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Spectrum Representation

Lecture #4
Chapter 3
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What Is this Course All About ?

• To Gain an Appreciation of the 
Various Types of Signals and Systems 

• To Analyze The Various Types of 
Systems

• To Learn the Skills and Tools needed 
to Perform These Analyses.

• To Understand How Computers 
Process Signals and Systems
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What is a Spectrum?
• A signal is a function of time which can be 

represented by a series of sinusoidal functions or 
sinusoidal components.

• These sinusoidal components have different 
frequencies, different amplitudes, and different 
phases.

• Therefore, the plots of frequency versus amplitude 
and phase for the sinusoidal components which 
comprise the signal are called the Frequency 
Spectrum or Spectrum of the signal.
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Decomposition of a signal
• We can express the following representation of a function:

• Here we see that there are N +1 frequency components for 
x(t), 0 ≤ k ≤ N and with each frequency there is a phasor.
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Decomposition of a signal
• For example, the kth frequency has a phasor Xk

with amplitude, Ak, and phase, θk. 

• This is really only half of the spectrum.
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Alternative form of the Spectrum
• Using Euler’s formula, let rewrite x(t) :

• Using this approach, we see that there are 2N+1 frequency components
• Or we can say that for each k where 1 ≤ k ≤ N, there is a positive frequency 

fk with phasor Xk /2 and a negative frequency  -fk with phasor Xk
* /2.  

• Therefore, we say that the spectrum is two-sided.
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An Example
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Notation Change
• For the 3rd terms in this 

sum
• Let’s define:

• Furthermore, define

Then,
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Using the new notation another 
(simpler) form appears
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Multiplication of Sinusoids

• A beat note (or frequency) is the result of 
multiplying sinusoids

• We see this in many applications:
– Music and broadcasting, 

• What is the spectrum of the product of 
sinusoids?
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Product of 2 Sinusoids
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Product of 2 Sinusoids
• The product of 2 sinusoids produce a signal which is the 

sum of 2 sinusoids whose frequencies are the sum and 
difference of the frequencies of the original sinusoids.

• In fact, if we define f1= fc as a center frequency and fc
>> f2, such that f2 = Δf (a small value compared to fC), 
then the product of the two sinusoids will yet 
frequencies ± Δf around fc

f0 fc + Δf
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fc - Δf fc - (fc – Δf)
-fc - (fc + Δf)
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Examples

• Two signals 20 Hz and 200 Hz
• Resultant product signal at 220 Hz and  180 Hz
• An envelop effect results (Beat Signal)
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Examples

• Two signals 180 Hz and 200 Hz
• Resultant product signal at 20 Hz and  380 Hz
• Notice the 20 Hz component (A single 20 Hz signal 

is added to emphasis the 20 Hz component)
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Amplitude Modulation
• Amplitude Modulation or AM is the technique used 

to broadcast AM radio.
• The “information” (e.g., the newscaster’s voice) is 

modulates a carrier signal.
• Usually, the carrier signal is at a frequency (the 

carrier frequency) which is much higher than the 
“information” to be broadcast (the AM band is 660 
kHz through 1600 kHz while the information is a 
voice signal which is between 150 Hz and 4 kHz)

• The form of AM is: 
x(t)=v(t)cos(2πfct)
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Spectrum of an AM Signal

• Let v(t) = A+Bcos(2πfit) 
• Then the AM signal becomes: 
x(t)=v(t)cos(2πfct)= (A+Bcos(2πfit)) cos(2πfct) 

= A cos(2πfct) +Bcos(2πfit) cos(2πfct)
= A cos(2πfct)+B/2(cos(2π[fc+fi]t)+cos(2π[fc-fi]t)
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Spectrum of an AM Signal
x(t)= A cos(2πfct)+B/2(cos(2π[fc+fi]t)+cos(2π[fc-fi]t)
• The spectrum has 3 components: at fc, fc+fi and   fc-fi

where the latter 2 are called the sidebands of the AM 
signal.

• fc- fi is the lower sideband and fc+fi is the upper sideband
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The waveform of an AM Signal

x(t)= (1+0.5 cos(2π20t)) cos(2π200t)
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Homework

• Exercises:
– 3.1 – 3.3

• Problems:

3

3.1, 3.2
3.3 Instead use ( ) sin (3 )x t t
 

 


