FIR Filters

Lecture #7 Chapter 5

What Is this Course All About ?

- To Gain an Appreciation of the Various Types of Signals and Systems
- To Analyze The Various Types of Systems
- To Learn the Skills and Tools needed to Perform These Analyses.
- To Understand How Computers Process Signals and Systems

Discrete-time Systems: Filters

- Study Discrete-time systems
- Discrete-time Filters
- Finite Impulse Response (FIR) Filters
- Infinite Impulse Response (IIR) Filters
- Recall: Discrete-time system.

 $y[n] = \mathcal{T} \{x[n]\}$

Moving Average Filter

- Moving average or running average filter:
- Choose a 3-point averaging method: For example:

 $y[0] = \frac{1}{3} (x[0] + x[1] + x[2])$ $y[1] = \frac{1}{3} (x[1] + x[2] + x[3])$ Or $y[n] = \frac{1}{3} (x[n] + x[n+1] + x[n+2])$

- This is called a difference equation
 - Used to completely describe the FIR for $-\infty < n < \infty$

Example

- The following sequence, x[n], is a finite length sequence since it only has values with a finite range $0 \le n \le 4$.
- This range is called the support of the sequence
- If we apply the difference equation we have the follow sequence for *y*[*n*]:

A closer Look

• If we tabulate the *x*[*n*] and *y*[*n*]

п	-3	-2	-1	0	1	2	3	4	5	6
x[n]	0	0	0	2	4	6	4	2	0	0
<i>y</i> [<i>n</i>]	0	0.6666667	2	4	4.6666667	4	2	0.6666667	0	0

- The highlighted numbers show how *y*[*n*] is calculated.
- Note that the output is longer than the input.
- And if *n* stands for time, then *y*[*n*] is a prediction of the future.
 - For example, y[0] depends not only on x[0] but also on x[1] and x[2].

Causality

- A system whose present values depend only on the present and the past is called a Causal system
- A system whose present values depend on the future is called a Non-causal system
- Let's rewrite our moving average filter to be causal:

$$y[n] = 1/3 (x[n]+x[n-1]+x[n-2])$$

Causal Moving Average filter

-2

-1

-3

y[n]

• The new sequences:

Th	ie ne	w tab	ole:								
п	-3	-2	-1	0	1	2	3	4	5	6	7
<i>x</i> [<i>n</i>]	0	0	0	2	4	6	4	2	0	0	0
v[n]	0	0	0	0.6666667	2	4	4.6666667	4	2	0.6666667	0

The General FIR Filter

• We can extend our moving average difference equation to this general form:

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

- Note that:
 - this system is causal
 - depends on a finite sequence of past values of x[n]
 - The coefficients, b_k 's, can viewed as a weights and therefore our filter becomes a weighted running average
- We call *M* the order of the FIR and number of coefficients is called the filter length and is equal to *M*+1

Another Example

 $x[n] = 1.02^{n} + \frac{1}{2}\cos(\frac{2\pi n}{8} + \frac{\pi}{4})$ for $0 \le n \le 40$ • Let's see how the following sequence is = 0 elsewhere 3-point FIR 7 - point FIR affected by a 3-point $y[n] = \frac{1}{7} \sum_{k=0}^{6} x[n-k]$ $y[n] = \frac{1}{3} \sum_{k=0}^{2} x[n-k]$ FIR and a 7-point FIR x[n] y[n] 3-point FIR 15 20 25 30 35 40 y[n] 7-point FIR 3 2 20 25 30 35 40 45 10 15 50

Unit Impulse Sequence

• The unit impulse only has a value at *n*=0. The notation used to represent the unit impulse is called the (Kronecker) delta function:

 $\delta[n] = 1$ for n=0, 0 elsewhere

• Therefore, shifted impulses are:

 $\delta[n-2] = 1$ for n=2, 0 elsewhere $\delta[n-k] = 1$ for n=k, 0 elsewhere

Application of the Unit Impulse

• One may use the unit impulse to represent our first sequence as:

 $x[n] = 2\delta[n] + 4\delta[n-1] + 6\delta[n-2] + 4\delta[n-3] + 2\delta[n-4]$

п	-1	0	1	2	3	4	5
$2\delta[n]$	0	2	0	0	0	0	0
$4\delta[n-1]$	0	0	4	0	0	0	0
$6\delta[n-2]$	0	0	0	6	0	0	0
$4\delta[n-3]$	0	0	0	0	4	0	0
$2\delta[n-4]$	0	0	0	0	0	2	0
0	0	0	0	0	0	0	0
x[n]	0	2	4	6	4	2	0

Unit Impulse Representation of a Sequence

• In fact, any sequence can be represented as sum of unit impulse functions.

$$x[n] = \sum_{k} x[k]\delta[n-k]$$

= \dots + x[-1]\delta[n+1] + x[0]\delta[n]
+ x[1]\delta[n-1] + x[2]\delta[n-2] + \dots

Unit Impulse Response Sequence

• When the input to a FIR is a unit impulse sequence $x [n] = \delta [n]$, the output is defined as the unit impulse response, h [n].

$$h[n] = \sum_{k=0}^{M} b_k \delta[n-k] = \begin{cases} b_n & n = 0, 1, 2, \dots, M \\ 0 & \text{otherwise} \end{cases}$$

- In other words, the impulse response *h*[*n*] of the FIR is the sequence of difference equation coefficients.
- Since h[n]=0 for n < 0 and n > M, the length of the h[n] is finite.
- This is why the system is called a finite impulse response, FIR, system

Unit Impulse Response Sequence

The Unit Impulse Response of a 3point Average FIR

Unit-Delay System

• A simple operator performs shift of the sequence by n_0 units.

$$y[n] = x[n - n_0]$$

• When $n_0 = 1$, the system is called the unit delay.

y[n] = x[n - 1]

• The impulse response of this system becomes:

$$h[n] = \delta [n - n_0]$$

A Unit Delay System

• What is this one?

Homework

- Exercises:
 - -5.1 5.4
- Problems:

- 5.1, 5.2, 5.3, 5.6