Laboratory Exercise 2: BJT Operation

See accompanying Data Sheet for the MPS2222 BJT. Review this exercise and complete steps 1, 2, and 3 before coming to class.

- 1. Read the Data Sheet to determine the layout of the transistor and the DC current gains, β (the data sheet refers to the DC current gain as h_{fe}).
- 2. Using the kit of parts design, an amplifier circuit which operates in the active region and has an approximate Q-point of VCE = 4.5v and $I_C = 6ma$.

 $\begin{array}{c} R_B \\ R_C \end{array}$

3. Write down the values of R_B and R_C for this design.

4. Build this circuit and using the oscilloscope (or VOM in your kit) measure and record I_B , V_{BE} , V_{CE} , I_C and β assuming $V_{IN} = 0$.

Page 1 of 3

5. Using the function generator, choose a value of V_{IN} such that the BJT operates entirely in the active region. Using the oscilloscope, view V_{CE} and I_C and then calculate the voltage gain and current gain of this amplifier. Show the results (waveforms and levels) and your calculations.

6. Slowly increase V_{IN} (until it reaches both cutoff and saturation) and note how the BJT performs. Does it reach cutoff before saturation? Why? Show the waveforms as you increase V_{IN} . What are the values of V_{IN} when cutoff and saturation is reached? Calculate the voltage and current gain for the various scenarios observed

