Laboratory Exercise 2: BJT Operation

See accompanying Data Sheet for the MPS2222 BJT. Review this exercise and complete steps 1, 2, and 3 before coming to class.

1. Read the Data Sheet to determine the layout of the transistor and the DC current gains, β (the data sheet refers to the DC current gain as $h_{f e}$).
2. Using the kit of parts design, an amplifier circuit which operates in the active region and has an approximate Q-point of VCE $=4.5 \mathrm{v}$ and $I_{C}=6 \mathrm{ma}$.
3. Write down the values of R_{B} and R_{C} for this design.
\qquad
R_{C} \qquad

4. Build this circuit and using the oscilloscope (or VOM in your kit) measure and record $I_{B}, V_{B E}, V_{C E}, I_{C}$ and β assuming $V_{I N}=0$.

Page 1 of 3
5. Using the function generator, choose a value of $V_{I N}$ such that the BJT operates entirely in the active region. Using the oscilloscope, view $V_{C E}$ and I_{C} and then calculate the voltage gain and current gain of this amplifier. Show the results (waveforms and levels) and your calculations.

$\Delta V_{I N}$
ΔI_{B}
ΔI_{C}
$\Delta V_{C E}$
A_{V}
A_{I}

6. Slowly increase $V_{I N}$ (until it reaches both cutoff and saturation) and note how the BJT performs. Does it reach cutoff before saturation? Why? Show the waveforms as you increase $V_{I N}$. What are the values of $V_{I N}$ when cutoff and saturation is reached? Calculate the voltage and current gain for the various scenarios observed

\section*{| $\Delta V_{I N}$ |
| :--- |
| ΔI_{B} |
 ΔI_{C}
 $\Delta V_{C E}$
 A_{I}}

A_{I} \qquad
$\Delta V_{I N}$ \qquad
ΔI_{B}
ΔI_{C}
$\Delta V_{C E}$ \qquad
A_{V}
\qquad

