Circuit Analysis

Lesson #1
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Circuit Analysis

e Circuit Elements
— Passive Devices
— Active Devices
* Circuit Analysis Tools
— Ohms Law
— Kirchhoff’s Law
— Impedances
— Mesh and Nodal Analysis
— Superposition
* Examples
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Characterize Circuit Elements

» Passive Devices: dissipates or stores energy
— Linear
— Non-linear

» Active Devices: Provider of energy or
supports power gain
— Linear

— Non-linear
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Circuit Elements — Linear Passive Devices

 Linear: supports a linear relationship between the
voltage across the device and the current through
it.

— Resistor: supports a voltage and current which
are proportional, device dissipates heat, and 1s
governed by Ohm’s Law, units: resistance or

ohms Q
—\NNN—

V,(¢) = I,(t)R where R 1s the value of the resistance associated with the resistor
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Circuit Elements — Linear Passive Devices

— Capacitor: supports a current which is
proportional to i1ts changing voltage, device
stores an electric field between its plates, and 1s
governed by Gauss’ Law, units: capacitance or

farads, f
® ) o
dv,(1) . | o |
[.(t)=C 7 where C is the value of the capacitance associated with the capacitor
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Circuit Elements — Linear Passive Devices

— Inductor: supports a voltage which is
proportional to its changing current, device
stores a magnetic field through its coils and 1s
governed by Faraday’s Law, units: inductance
or henries, £

Y Y YL,

Il : : : : :
V.(t)=L % where L 1s the value of the inductance associated with the inductor
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Circuit Elements - Passive Devices Continued

* Non-linear: supports a non-linear
relationship among the currents and
voltages associated with i1t

— Diodes: supports current flowing through it in
only one direction
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Circuit Elements - Active Devices

Linear

— Sources

 Voltage Source: a device which supplies a voltage
as a function of time at its terminals which 1s

independent of the current flowing through it, units:
Volts

— DC, AC, Pulse Trains, Square Waves, Triangular
Waves

« Current Source: a device which supplies a current
as a function of time out of its terminals which is
independent of the voltage across it, units: Amperes

— DC, AC, Pulse Trains, Square Waves, Triangular
Waves
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Circuit Elements - Active Devices
Continued

— ldeal Sources vs Practical Sources

> Vab (t)

e An 1deal source is one which only depends on the
type of source (i.e., current or voltage)

A practical source 1s one where other circuit
elements are associated with it (e.g., resistance,
inductance, etc. )

— A practical voltage source consists of an i1deal voltage
source connected in series with passive circuit elements
such as a resistor

— A practical current source consists of an ideal current
source connected in parallel with passive circuit elements
such as a resistor

® a

IS(t) Rs Iab(t)

® )
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Circuit Elements - Active Devices
Continued

— Independent vs Dependent Sources

. « An independent source 1s one where the output
V) voltage or current 1s not dependent on other voltages
. or currents in the device

* A dependent source 1s one where the output voltage
or current 1s a function of another voltage or current
in the device (e.g., a BJT transistor may be viewed
as having an output current source which is
dependent on the mput current)

i

S l

— AW
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Circuit Elements - Active Devices
Continued

« Non-Linear

— Transistors: three or more terminal devices
where 1ts output voltage and current
characteristics are a function on its mput

voltage and/or current characteristics, several
types BJT, FETs, etc.
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Circuits

A circuit 1s a grouping of passive and active
clements

* Elements may be connecting 1s series,
parallel or combinations of both
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Circuits Continued

» Series Connection: Same current through the
devices

— The resultant resistance of two or more Resistors
connected 1n series 1s the sum of the resistance

— The resultant inductance of two or more Inductors
connected 1n series 1s the sum of the inductances

— The resultant capacitance of two or more Capacitors
connected 1n series 1s the inverse of the sum of the
Inverse capacitances

— The resultant voltage of two or more Ideal Voltage
Sources connected 1n series 1s the sum of the voltages

— Two of more Ideal Current sources can not be
connected 1n series
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Series Circuits

. a R]_ b R2 c
e Resistors Ve =V Ve = IR + IR,
Rr=R,+R
T 10w =I(R,+R,)=IR,
a Ll b L2 c
* Inductors ooy sy =gl dl
L. =L,+L, dt dt
C C :(L1+L2)%:LT%
1 2
a sl b sl ¢ 1 1
. N V.=V,+V,. =—=|ldt+—|Idt
« Capacitors T e c 1]
CT = L_FL = Cl + C2 Z(CLI+CL2)JIdt=CLTJIdt
Cl CZ
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Resistors

Series Circuits

. 20Q, 50Q

o—

R, = 20+ 50 = 70Q

V. =V, +V, =120+150
= 1(20+50) = 170

BME 372 Electronics [ —
J.Schesser

17



Inductors

Series Circuits

~25h  100h
oYY Y\ oo MY\ 4
L, =25+ 100 = 125h

v o—v 47, =25 1004
d d

_25+100) % Z 1254
dt dt
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Series Circuits

Capacitors 5f  10f
. ;I . ;I .
1 5x10 50 10
C, = = = =—=333
1.1 5410 15 3 4
510

1

=V, 4V, :—Ildt+%Jldt

5
I 1 3
=(=+—)| ldt =—| 1dt
(5 10)'[ 10-[
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Series Circuits

Capacitors 10f  10f

a c

Y I I
7| 7|

1 10x10 100 10
I 1 10+10 20 2

10 10

C, =

=5f

V=V +V, :%jldwr%j[dt
=(%+%)j[dt=%jldt=%jldt
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Circuits Continued

 Parallel Connection: Same Voltage across the
devices

— The resultant resistance of two or more Resistors
connected in parallel is the inverse of the sum of the
inverse resistances

— The resultant inductance of two or more Inductors
connected in parallel is the inverse of the sum of the
inverse inductances

— The resultant capacitance of two or more Capacitors
connected 1n parallel 1s the sum of the capacitances

— The resultant current of two or more Ideal Current
Sources connected in parallel 1s the sum of the currents

— Two of more Ideal Voltage sources can not be

connected in parallel
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Parallel Circuits

Loy
a.a
» Resistors “~ 71, 1 "R+&, | 3R, IQE R, T RTE,
R R =(—+—) =—
1 i b. (Rl Rz) R,
a[ab_>
1 1
_ 1 _ L1L2 ]ab:]1+]2:fIth+L—Ith
Induct LT_I 1 L +L ]Il L, 1 .
 Inductors 1+l LtL L
Ll L2 b (Ll LZ)J LT‘[
Ly Iab=11+]2:C1dV+C2dV

dr T dr

“@
. —c+c) —c AV
° Capac1t0rs CT = C1+ C2 []l lCl [%l C, (C,+C,) i i

paEy
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Combining Circuit Elements
Kirchhoff’s Laws

» Kirchhoff Voltage Law: The sum of the
voltages around a loop must equal zero

» Kirchhoff Current Law: The sum of the
currents leaving (entering) a node must
equal zero
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Combining Rs, Ls and Cs

e We can use KVL or KCL to write and solve
an equation associated with the circuit.

— Example: a series Resistive Circuit

Ry
V(it)=I1(tR, + I(H)R,

V() =I(H)(R; + R),) V(t) <> 0 % R,
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Combining Rs, Ls, and Cs

e We can use KVL or KCL to write and solve
an equation associated with the circuit.

— Example: a series Resistive Circuit
1,(t) 15(1)

() (1) +5(£)=0 I2($ R, % R,
L(O=-V(O)/R; I;(1)=-V()/R; | |
[,(t)- V(H)/R, - V(t)/R,=0 |
L,(&)=V(t)/R,+V(t)/R=V()|1I/R,+1/R,]
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e Resistors

Series Circuits

. 20Q, 50Q

o—

* 70V -

R, = 20+ 50 = 70Q

V. =V +V, =120+150
= 1(20+50) =170 =70V
[=14
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Combining Rs, Ls and Cs

— Example: a series RLC circuit

Rl L1

V(t)=1(t)R, + L, dl(t) j[ (t)dt V(1) 'N lc1

— Or to stmplify this analysis, we can concentrate
on special cases
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Impedances

* Our special case, signals of the form: V(t) or I(t) =Ae*
where s can be a real or complex number

t di(t)

0 =10+ 1,50 [ o 106 = 1(010+5% 4 [ ey
5t
Let's assume: 106 :Ae5110+5dAe +5J‘A 5t g
V(t)=10e";R, =100 L, =5h;C, = 2 f s
Let's try : 10e™ = A(e*10+5%5¢> + 2 )
_ St

1= 4e — A(c"36)

-2 1=
36 36

« This 1s only one portion of the solution and does not

include the transient response.
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Impedances

* Since the derivative [and integral] of Ae’ =
sAest [=(1/s)Ae’"], we can define the
impedance of a circuit element as Z(s)=V/I
where Z 1s only a function of s since the
time dependency drops out.
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Impedances

dI(¢)

For an inductor, let's assume () = Ae*;then V(¢)=L % = LsAe™;
st
Z(s)=L = _ g
I Ae’
: ' St dV(t) St
For a capacitor, let's assume V' (¢) = Ae” ;then I(¢)=C 7 =CsAde™;
st
Z(S)ZKZ Ae - 1
I sCA4e” sC

For a resistor, let's assume /(1) = Ae”;then V(¢)=RI(t) = RAe";

St
Z(s)=L=Re _p
I Ae’
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Impedances

* What about signals of the type: cos(w?+0);

« Recall Euler’s formula e/¢ = cos 6 +; sin 0
where j 1s the imaginary number = /1

* A special case of our special case 1s for
sinusoidal inputs, where s=jw
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Complex Numbers

* Complex numbers: What are they?
* What 1s the solution to this equation?
ax*+bx+c=0

* This 1s a second order equation whose
solution 1s:

_ —bir\/b2 —4ac

X2 2
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What is the solution to?

1. x?+4x+3=0

_ —4%4*—4x3 _ —4%416-12

1.2

2
=—1,-3

2
_—4%44 442
2 2
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What is the solution to?

2. x*+4x+5=0

_ —4%4*—4x5 _ —4+4/16-20
2 2

1.2

= Z4EV=4 99999
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What is the Square Root of a Negative

Number?
* We define the square root of a negative

number as an 1maginary number
 We define

v—1 = j for engineers (i for mathematicans)

 Then our solution becomes:

o — 444 —4x5 —4+.16-20
1,2 o
’ 2

>
4+ 4+ 4+
_ 4—2 L 4—2fﬁ= 4512=—2+j1,—2—j1
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The Complex Plane

e z =Xx+jy1s a complex number where:
x = Re{z} 1s the real part of z
y = Im{z} 1s the imaginary part of z
* We can define the complex plane and we can

define 2 representations for a complex number:
Z =Xy

Im{z} 1

Vi — ® (X))
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Rectangular Form

* Rectangular (or cartesian) form of a complex
number 1s given as

Z =Xty
x = Re{z} 1s the real part of z
y = Im{z} 1s the imaginary part of z

zZ =XxXtjy
Im{Z} A
y ............................. . (x,»)
" Re{z)

Rectangular or Cartesian
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Polar Form
o z=re¢’’ =r/@ is a complex number where:
* 7 1s the magnitude of z

* @ 1s the angle or argument of z (arg z)

Im {Z} A
y .............................. y (1,0)

Polar

BME 372 Electronics [ —
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Relationships between the Polar and Rectangular
Forms

z=x+jy=rell

« Relationship of Polar to the Rectangular Form:
x =Re{z} =rcos b
y =Imi{z} =rsin 0

« Relationship of Rectangular to Polar Form:

= \/ x*+y°> and 6= arctan(%)
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Addition of 2 complex numbers

 When two complex numbers are added, 1t 1s best to use
the rectangular form.

* The real part of the sum 1s the sum of the real parts and
imaginary part of the sum 1s the sum of the imaginary

parts.

Yity, ¢ Im
 Example:z; =z, + z, \

zy =X+ Jyz2, =X+ Jy,

Zy =2t 2y =X+ Y+ X, + Y,
=X, T X, + Y,

= (X, + X))+ () +),)
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Multiplication of 2 complex numbers

* When two complex numbers are multiplied, 1t 1s best
to use the polar form:

[ ] * — . .
Example: z; =z, X z, 2 =re'z =pe®
— — 7 (0r) J(6>)
Z,=zZ Xz, =re Xre
(6 _j (6, (6,+6,
27’17’281( )ej( ):’/.lrzej( +0,)

* We multiply the magnitudes and add the phase angles

0,=0,+6, Im X
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Euler’s Formula

e/?=cos@+jsinb

Im{z} 1 1

s

Re{z}

* We can use Euler’s Formula to define complex
numbers

z=rel’=rcosf+jrsinf
=Xty
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Complex Exponential Signals

* A complex exponential signal is define as:

Z(Z_) — Aej(wot+¢)

* Note that 1t 1s defined 1n polar form where
— the magnitude of z(?) 1s |z(¢)| = 4
— the angle (or argument, arg z(¢) ) of z(¢?) = (w t + ¢)

* Where o, 1s called the radian frequency and ¢ 1s the phase angle
(phase shift)
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Complex Exponential Signals

* Note that by using Euler’s formula, we can rewrite the
complex exponential signal in rectangular form as:

z(t) = A/ (@otF9)

= A COS(COOf + ¢) + jA sin(a)ot + ¢)

* Therefore real part 1s the cosine signal and i1maginary
part 1s a sine signal both of radial frequency o, and
phase angle of ¢
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Plotting the waveform of a complex exponential signal

* For an complex signal, we plot the real part and the
Imaginary part separately.
« Example:
2(t) = 20 /rA0)-041) = () j(8071-0.47)

= 20 cos(8072-0.4x) + ;20 sin(80xz-0.47)

‘—imaginary part‘
———————————— 20—
| | |
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NOTE!!!!

* The reason why we prefer the complex
exponential representation of the real cosine
signal:

x(t) =Re{z(t)} =Re{de’ """}
= Acos(w t + @)

* In solving equations and making other
calculations, it easier to use the complex
exponential form and then take the Real Part.
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Complex Exponential Function as a function of time

727 — o2 — cos 27t + jsin 27t
t=8/8 seconds

arg(z(t))=2n x8/8 = 2n ; z(t)= 1+ j0
t=3/8 seconds arg(z(t))=2m x2/8= n/2; z()= 0 + j1

e Let’s look at this z(t) =le

t=2/8 seconds

Im{z} A t=1/8 seconds
arg(z(t))=2m x3/8 = 3n/4; maz
. arg(z(t))=2n x1/8=nr/4, z(1)=0.707+j 0.707
z(t)=-0.707+ j0.707 =0 seconds
1=4/8 seconds 45°
< > _ _ 7
)=2m x0=0; z(t)=1+ j0

arg(z(t))=27tx4/8 =1, z(t)= -1+ jO Re{Z} arg(z(t)=2m x ; z(1) J

t=5/8 seconds 1=7/8 seconds

v
arg(z(t))=27r x5/8 = 57[/4,‘ arg(z(t))=27rx7/8= 77[/4’.
z(t)=-0.707 - j0O.707 1=6/8 seconds z(t) = 0.707-j0.707

arg(z(t))=2m x6/8 = 3n/2; z(t) = 0 -
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Phasor Representation of a Complex Exponential
Signal

» Using the multiplication rule, we can rewrite
the complex exponential signal as

Z(l') — Aej(a)ot+¢) Ae]a)z ié Aem jwt Xejwot
where X 1s a complex number equal to
X = Ae”

« X1s complex amplitude of the complex
exponential signal and 1s also called a phasor
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Graphing a phasor

« X=A e/? can be graphed in the complex plane with
magnitude A and angle ¢:

Re
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Graphing a Complex Signal in terms of its phasors

* Since a complex signal, z(7), 1s a phasor multiplying a
complex exponential signal e/®o' | then a complex
signal can be viewed as a phasor rotating in time:

z(t) = Ae/(@1t9) — K oI

Im 1 /
A¢\

Re
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Rotating Phasor
: jQa+s) L .
e Let’s look at this z(r)=4de”  * = Ade *e’*" = Xe’*”"
_ iz
t=1 seconds X = 4o
arg(z(t))=2n x1+n/4 = 9n/4 = n/4

t=1/8 seconds

t=1/4 seconds arg(z(t))=2m x1/8+m/4 = m/2 =0 seconds

are(z(t)=2m x1/4+1/4 = 3n/4  1MZ] t A arg(2() =2 x0-+n/4 — w4

t=3/8 seconds 45} (=7/8 seconds

are(e() =2 x3/8--a/4 = 4t h . I;;EZ}arg(Z(t)) =2 x7/8+n/4 = 8n/4 = 2n
t=1/2 seconds t=3/4 seconds
arg(z(y) =2nx1/2+m/d = 5/ arg(z(t) =2n x3/A-m/d = Ta/d

t=5/8 seconds
arg(z(t))=2r x5/8+n/4 = 6m/4 = 3r/2
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Sinusoidal Steady State

o If V(1) = A cos (wt+6), then we can represent V(?)
as

Re{Ade@*0)t = Re{de? &}
Since from Euler’s formula:

A e/ ) =Acos(wt+0) + j Asin (wt+0)
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Sinusoidal Steady State
« What is Ae /(@0 9

— First, it 1s a complex function since it 1s a function of a complex
number. If we plot on the complex plane, it has a magnitude of A4
and angle of w?+6. It can be viewed as a vector which rotates in
time around the origin of the complex plane at angular velocity w

and at =0 1s at 0 degrees from the real axis.

Imaginary Numbers Imaginary Numbers
Complex Plane — Complex Plane
IS 0 At t=0 7 \200+ At =20

Real Numbers Real Numbers

— We can represent this function by a PHASOR in terms of
rectangular coordinates or polar coordinates

MAGNITUDE ZANGLE (phasor notation) = or in this case V' =A4/6

BME 372 Electronics [ —
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Sinusoidal Steady State Continued

* We define the Voltage phasor as V and current phasor as |
* Define SSS impedance as Z =V / | using Ohm’s Law
e Then the impedances become:

— For an inductor V=jwL 1

Z, =jol=>wl/ g; Here we say the voltage across an inductor leads the current through it by 90°.

: 1
— For a capacitor V= ——1
joC

1 1 : :
— y —g ; Here we say the voltage across a capacitor lags the current through it by 90°.

C_ij wC
— For aresistor V=R |

Z

Z,=R= RZ0 ; Here we say the voltage across a resistor is in phase with the current through it.
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Sinusoidal Steady State Continued

— For an inductor, Z, = joL = a)Lég

. 1
— For a capacitor, Z, = ——= L——.
joC  oC 2

— For a resistor, Z, = R= RZ0

Imaginary Numbers Imaginary Numbers Imaginary Numbers

Inductor Capacitor N
/- 1 2 N )
\/9\ 0 A

Real Numbers )
Resistor
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Sinusoidal Steady State Continued

For V(t)=Acoswt, using phasor notation for

V() = V= 40 and I(¢) =» |, our equation can be re-
written:

V(t)=I()R, + L, are | 1 j 1(t)dt
dt
Converting to Phasor representatlon
1

V=A4/0=IR + joL | +—
JaC,
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Sinusoidal Steady State Continued

. A£0 B AL0 _ y /—tan|

R + joL, +.1 R + j(owL, —
joC

1 L

Converting back to the time representation,

(oL, —

cos(wt —tan ™" !
( [ R ),

A

\/Rﬁ +(al, -

1(t) =

1
C)

1
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Homework

R1 R3
AW AW 4
1k 1k
5k R2

Find the total resistance

BME 372 Electronics [ —
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Homework

Find the total resistance R , where
R,=30,R,=6Q R, =12Q, R, = 4Q, R, = 2Q, R, = 2Q, R, = 4Q, R, = 4Q
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Homework

Find the total resistance R , where
R,=2Q,R,=4Q, R, =2Q, R, =2Q, R, = 2Q, R, = 4Q,

R] R3
* AN
R, ?
’ —AW—
R5
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Homework

Find the total resistance R, for this infinite resistive network

R R R R R R
a —W——AMN——MWA— —AM— —AM— —AW—

R continues to infinity
R R R R ——

b —MA——AMN——AM— —AMN——AMN—'—AM—
R R R R R R
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Homework

U P
T o T o
l l )

Find the total capacitance
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Homework

Find and plot the impedance Z ,(jw) as a function of
frequency. Use Matlab to perform the plot.

C=1  R=]

]g —\\W\— a
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Homework

Find and plot the impedance Z ,(jw) as a function of
frequency. Use Matlab to perform the plot.

L=1 é 7\—C21 § R=1
b
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} } Homework

A, ‘[ A", I a
1k 5k

C1 c2

I

Find and plot the impedance Z ,(jw) as function of w.
Use Matlab to perform the plot.
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Homework

a RD 29.5K RS500  p
A4 4"AA%

CD 53n

The circuit shown 1s an equivalent circuit of an
electrode where RD and CD are the resistance and
capacitance associated with the interface of the
electrode and the body and RS is the resistance of the
device itself. Find and plot the impedance Z ,(jw) as
function of w. Use Matlab to perform the plot.
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