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Circuit Analysis

Lesson #1
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Circuit Analysis

• Circuit Elements
– Passive Devices
– Active Devices

• Circuit Analysis Tools
– Ohms Law
– Kirchhoff’s Law
– Impedances
– Mesh and Nodal Analysis
– Superposition

• Examples
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Characterize Circuit Elements

• Passive Devices: dissipates or stores energy
– Linear
– Non-linear

• Active Devices: Provider of energy or 
supports power gain
– Linear
– Non-linear
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Circuit Elements – Linear Passive Devices

• Linear: supports a linear relationship between the 
voltage across the device and the current through 
it.
– Resistor:  supports a voltage and current which 

are proportional, device dissipates heat, and is 
governed by Ohm’s Law, units: resistance or 
ohms Ω

resistor  with theassociated resistance  theof  value theis R  where)( (t)RItV RR 
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Circuit Elements – Linear Passive Devices

– Capacitor: supports a current which is 
proportional to its changing voltage, device 
stores an electric field between its plates, and is 
governed by Gauss’ Law, units: capacitance or 
farads, f

capacitor  with theassociated ecapacitanc  theof  value theis C  where)( dt
(t)dVCtI C

C 
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Circuit Elements – Linear Passive Devices

– Inductor: supports a voltage which is 
proportional to its changing current, device 
stores a magnetic field through its coils and is 
governed by Faraday’s Law, units: inductance 
or henries, h

inductor  with theassociated inductance  theof  value theis L  where)( dt
(t)dILtV L

L 
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Circuit Elements - Passive Devices Continued

• Non-linear: supports a non-linear 
relationship among the currents and 
voltages associated with it
– Diodes: supports current flowing through it in 

only one direction
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Circuit Elements - Active Devices
• Linear

– Sources
• Voltage Source: a device which supplies a voltage 

as a function of time at its terminals which is 
independent of the current flowing through it, units: 
Volts

– DC, AC, Pulse Trains, Square Waves, Triangular 
Waves

• Current Source: a device which supplies a current 
as a function of time out of its terminals which is 
independent of the voltage across it, units: Amperes

– DC, AC, Pulse Trains, Square Waves, Triangular 
Waves

+

--
Vab(t)
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Circuit Elements - Active Devices 
Continued

– Ideal Sources vs Practical Sources
• An ideal source is one which only depends on the 

type of source (i.e., current or  voltage)
• A practical source is one where other circuit 

elements are associated with it (e.g., resistance, 
inductance, etc. )

– A practical voltage source consists of an ideal voltage 
source connected in series with passive circuit elements 
such as a resistor

– A practical current source consists of an ideal current 
source connected in parallel with passive circuit elements 
such as a resistor

+

--

Vab(t)

a

b

Rs

Vs(t)

Is(t)

a

b

Rs Iab(t)
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Circuit Elements - Active Devices 
Continued

– Independent vs Dependent Sources
• An independent source is one where the output 

voltage or current is not dependent on other voltages 
or currents in the device

• A dependent source is one where the output voltage 
or current is a function of another voltage or current 
in the device (e.g., a BJT transistor may be viewed 
as having an output current source which is 
dependent on the input current)

+

--
Vab(t)
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Circuit Elements - Active Devices 
Continued

• Non-Linear
– Transistors: three or more terminal devices 

where its output voltage and current 
characteristics are a function on its input 
voltage and/or current characteristics, several 
types BJT, FETs, etc.
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Circuits

• A circuit is a grouping of passive and active 
elements

• Elements may be connecting is series, 
parallel or combinations of both
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Circuits Continued
• Series Connection: Same current through the 

devices
– The resultant resistance of two or more Resistors 

connected in series is the sum of the resistance
– The resultant inductance of two or more Inductors 

connected in series is the sum of the inductances
– The resultant capacitance of two or more Capacitors 

connected in series is the inverse of the sum of the 
inverse capacitances

– The resultant voltage of two or more Ideal Voltage 
Sources connected in series is the sum of the voltages

– Two of more Ideal Current sources can not be 
connected in series
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Series Circuits

• Resistors

• Inductors

• Capacitors

R1 R2

RT = R1+ R2

L1 L2

LT = L1+ L2

C1 C2

21

21

21

11
1

CC
CC

CC

CT 





T

bcabac

IRRRI
IRIRVVV




)( 21

21

dt
dILdt

dILL

dt
dILdt

dILVVV

T

bcabac





)( 21

21





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Series Circuits

• Resistors
20Ω 50Ω

RT = 20+ 50 = 70Ω

70)5020(
5020

II
IIVVV bcabac




a b c
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Series Circuits

• Inductors
25h 100h

LT =25+ 100 = 125h

dt
dI

dt
dI

dt
dI

dt
dIVVV bcabac

125)10025(

10025





a b c
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Series Circuits

• Capacitors 5f 10f

fCT 33.3
3

10
15
50

105
105

10
1

5
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1
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Series Circuits

• Capacitors 10f 10f

fCT 5
2

10
20

100
1010
1010
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Circuits Continued
• Parallel Connection: Same Voltage across the 

devices
– The resultant resistance of two or more Resistors 

connected in parallel is the inverse of the sum of the 
inverse resistances

– The resultant inductance of two or more Inductors 
connected in parallel is the inverse of the sum of the 
inverse inductances

– The resultant capacitance of two or more Capacitors 
connected in parallel is the sum of the capacitances

– The resultant current of two or more Ideal Current 
Sources connected in parallel is the sum of the currents

– Two of more Ideal Voltage sources can not be 
connected in parallel
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Parallel Circuits

• Resistors

• Inductors

• Capacitors

R1 R2

CT = C1+ C2

L1 L2

C1 C2
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1
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
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Combining Circuit Elements 
Kirchhoff’s Laws

• Kirchhoff Voltage Law: The sum of the 
voltages around a loop must equal zero

• Kirchhoff Current Law: The sum of the 
currents leaving (entering) a node must 
equal zero



BME 372 Electronics I –
J.Schesser

24

Combining Rs, Ls and Cs

• We can use KVL or KCL to write and solve 
an equation associated with the circuit.
– Example: a series Resistive Circuit

V(t) = I(t)R1 + I(t)R2

V(t) = I(t)(R1 + R2)

R1

+

--
V(t)

I(t)
R2
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Combining Rs, Ls, and Cs 

• We can use KVL or KCL to write and solve 
an equation associated with the circuit.
– Example: a series Resistive Circuit

I1(t)+I2(t)+I3(t)=0
I2(t)=-V(t)/R1; I3(t)=-V(t)/R2;
I1(t) - V(t)/R1 - V(t)/R2 =0
I1(t)=V(t)/R1 +V(t)/R2=V(t)[1/R1 +1/R2]

25

R1V(t) R2

+

-

I1(t)

I2(t)

I3(t)
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Series Circuits

• Resistors
20Ω 50Ω

RT = 20+ 50 = 70Ω

AI
VII

IIVVV bcabac

1
7070)5020(

5020






a b c

+ 70V -
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Combining Rs, Ls and Cs

– Example: a series RLC circuit

– Or to simplify this analysis, we can concentrate 
on special cases   

 dttICdt
tdILRtItV )(1)()()(

1
11 C1

R1 L1

+

--
V(t) I(t)
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Impedances
• Our special case, signals of the form: V(t) or I(t) =Aest

where s can be a real or complex number

• This is only one portion of the solution and does not 
include the transient response. 
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Impedances

• Since the derivative [and integral] of Aest = 
sAest [=(1/s)Aest], we can define the 
impedance of a circuit element as Z(s)=V/I
where Z is only a function of s since the 
time dependency drops out.
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Impedances
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Impedances

• What about signals of the type: cos(ωt+θ);

• Recall Euler’s formula e jθ= cos θ +j sin θ
where  j is the imaginary number =

• A special case of our special case is for 
sinusoidal inputs, where s=jω

1
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Complex Numbers

• Complex numbers:  What are they?
• What is the solution to this equation?

ax2+bx+c=0
• This is a second order equation whose 

solution is:

a
acbbx 2

42

2,1

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What is the solution to?

1. x2+4x+3=0

3,12
24

2
44

2
12164

2
3444 2

2,1



x
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What is the solution to?

2. x2+4x+5=0

?????  2
44

2
20164

2
5444 2

2,1



x
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What is the Square Root of a Negative 
Number?

• We define the square root of a negative 
number as an imaginary number

• We define 

• Then our solution becomes:
ans)mathematicfor  ( engineersfor    1 i j 

12,12
2

24
2

44  
2

44
2

20164
2

5444 2

2,1

jjjj

x

















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The Complex Plane

• z = x+jy is a complex number where:
x = Re{z} is the real part of z
y = Im{z} is the imaginary part of z

• We can define the complex plane and we can 
define 2 representations for a complex number:

Re{z}

Im{z}

x

y

z = x+jy

(x,y)
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Rectangular Form

• Rectangular (or cartesian) form of a complex 
number is given as

z = x+jy
x = Re{z} is the real part of z
y = Im{z} is the imaginary part of z

Re{z}

Im{z}

Rectangular or Cartesian

x

y

z = x+jy

(x,y)
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Polar Form
• is a complex number where:
• r is the magnitude of z
• θ is the angle or argument of z (arg z)

Re{z}

Im{z}

Polar

x

y

z = r e jθ

(r,θ)

θ

r

z  re j  r



BME 372 Electronics I –
J.Schesser

39

Relationships between the Polar and Rectangular 
Forms

z = x + jy = r e jθ

• Relationship of Polar to the Rectangular Form:
x = Re{z} = r cos θ
y = Im{z} = r sin θ

• Relationship of Rectangular to Polar Form:

)arctan(   and    22

x
yyxr  



BME 372 Electronics I –
J.Schesser

40

Addition of 2 complex numbers
• When two complex numbers are added, it is best to use 

the rectangular form.
• The real part of the sum is the sum of the real parts and 

imaginary part of the sum is the sum of the imaginary 
parts.

• Example: z3 = z1 + z2

)()(

;

2121

2121

2211213

222111

yyjxx
jyjyxx

jyxjyxzzz
jyxzjyxz







Re

Im

z

z

x

y
y

x
xx2

yy2

z
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Multiplication of 2 complex numbers

• When two complex numbers are multiplied, it is best 
to use the polar form:

• Example: z3 = z1 x z2

• We multiply the magnitudes and add the phase angles

)(
21

)()(
21

)(
2

)(
1213

)(
22

)(
11

2121

21

21 ;













jjj

jj

jj

erreerr
ererzzz

erzerz

Re

Im

θ1

r

θ2r
r3 = r1 r2

θ3= θ1 +θ2
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Euler’s Formula

e jθ = cos θ + j sin θ

• We can use Euler’s Formula to define complex 
numbers

z = r e jθ= r cos θ + j r sin θ
= x + j y 

Re{z}

Im{z}

θ


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Complex Exponential Signals

• A complex exponential signal is define as:

• Note that it is defined in polar form where
– the magnitude of z(t) is |z(t)| = A 
– the angle (or argument, arg z(t) ) of z(t) = (ωot + ϕ)

• Where ωo is called the radian frequency and ϕ is the phase angle 
(phase shift)

)()(   tj oAetz
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Complex Exponential Signals

• Note that by using Euler’s formula, we can rewrite the 
complex exponential signal in rectangular form as:

• Therefore real part is the cosine signal and imaginary 
part is a sine signal both of radial frequency ωo and 
phase angle of ϕ

)sin()cos(
)( )(






 

tjAtA
Aetz

oo

tj o
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Plotting the waveform of a complex exponential signal

• For an complex signal, we plot the real part and the 
imaginary part separately.

• Example:  
z(t) = 20e j(2π(40)t-0.4π) = 20e j(80πt-0.4π)

= 20 cos(80πt-0.4π) + j20 sin(80πt-0.4π) 
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NOTE!!!!

• The reason why we prefer the complex 
exponential representation of the real cosine 
signal:

• In solving equations and making other 
calculations, it easier to use the complex 
exponential form and then take the Real Part.

)cos(
}{)}({)( )(






 

tA
Aeetzetx

o

tj o
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Complex Exponential Function as a function of time

• Let’s look at this 

Re{z}

Im{z}



tjteetz tjtj  2sin2cos1)( 2)1(2 

t=2/8 seconds 

arg(z(t))=2π x2/8= π/2; z(t)= 0 + j1
t=1/8 seconds 

arg(z(t))=2π x1/8=π/4; z(t)=0.707+j 0.707

t=3/8 seconds 

arg(z(t))=2π x3/8 = 3π/4; 

z(t)= -0.707+ j0.707
t=4/8 seconds 

arg(z(t))=2π x4/8 = π; z(t)= -1+ j0

t=5/8 seconds 

arg(z(t))=2π x5/8 = 5π/4;

z(t)= -0.707 - j0.707 t=6/8 seconds 

arg(z(t))=2π x6/8 = 3π/2; z(t) = 0 - j

t=7/8 seconds 

arg(z(t))=2π x7/8= 7π/4; 

z(t) = 0 .707- j0.707

t=0 seconds 

arg(z(t))=2π x0=0; z(t)=1+ j0

t=8/8 seconds 

arg(z(t))=2π x8/8 = 2π ; z(t)= 1+ j0
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Phasor Representation of a Complex Exponential 
Signal

• Using the multiplication rule, we can rewrite 
the complex exponential signal as

• X is complex amplitude of the complex 
exponential signal and is also called a phasor





j

tjtjjjtjtj

Ae

eeAeeAeAetz oooo



 

X
X

X
 toequalnumber complex  a is  where

)( )(
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Graphing a phasor

• X=A e jϕ can be graphed in the complex plane with 
magnitude A and angle ϕ:

Re

Im

ϕ


X=A e jϕ
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Graphing a Complex Signal in terms of its phasors

• Since a complex signal, z(t), is a phasor multiplying a 
complex exponential signal e jωot , then a complex 
signal can be viewed as a phasor rotating in time:

Re

Im

ϕ
A

tjtj oo eAetz  X  )()(
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Rotating Phasor
• Let’s look at this 

Re{z}

Im{z}



A

4

224
)

4
2(

                                              

)(





j

tjtjjtj

Ae

eeAeAetz






X

X

t=1/8 seconds 

arg(z(t))=2π x1/8+π/4 = π/2
t=0 seconds 

arg(z(t))=2π x0+π/4 = π/4

t=1/4 seconds 

arg(z(t))=2π x1/4+π/4 = 3π/4

t=3/8 seconds 

arg(z(t))=2π x3/8+π/4 = 4π/4 = π

t=1/2 seconds 

arg(z(t))=2π x1/2+π/4 = 5π/4
t=5/8 seconds 

arg(z(t))=2π x5/8+π/4 = 6π/4 = 3π/2

t=3/4 seconds 

arg(z(t))=2π x3/4+π/4 = 7π/4

t=7/8 seconds 

arg(z(t))=2π x7/8+π/4 = 8π/4 = 2π

t=1 seconds 

arg(z(t))=2π x1+π/4 = 9π/4 = π/4
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Sinusoidal Steady State

• If V(t) = A cos (ωt+θ), then we can represent V(t)
as 

Re{Aej(ωt+θ )}    =    Re{Aejθ ejωt} 

Since from Euler’s formula: 

A e j(ωt+θ )=Acos(ωt+θ ) + j Asin (ωt+θ )
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Sinusoidal Steady State
• What is Ae j(ωt+θ) ?

– First, it is a complex function since it is a function of a complex 
number. If we plot on the complex plane, it has a magnitude of A
and angle of ωt+θ. It can be viewed as a vector which rotates in 
time around the origin of the complex plane at angular velocity ω
and at t=0 is at θ degrees from the real axis. 

– We can represent this function by a PHASOR in terms of 
rectangular coordinates or polar coordinates 

Real Numbers

Complex Plane

At t=0

Imaginary Numbers

θ

Real Numbers

Complex Plane

At t=20

Imaginary Numbers

20ω+θ

MAGNITUDEANGLE  (phasor notation)  or in this case V  A
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Sinusoidal Steady State Continued
• We define the Voltage phasor as V and current phasor as I
• Define SSS impedance as Z = V / I using Ohm’s Law
• Then the impedances become:

 For an inductor V= jL  I

    ZL  jL L
2

;  Here we say the voltage across an inductor leads the current through it by 90. 

 For a capacitor V= 1
jC

 I

    ZC 
1

jC


1
C



2

 ;  Here we say the voltage across a capacitor lags the current through it by 90. 

 For a resistor V= R I
    ZR  R  R0 ;  Here we say the voltage across a resistor is in phase with the current through it. 
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Sinusoidal Steady State Continued

Real Numbers

Imaginary Numbers

θ

Inductor
Imaginary Numbers

θ

Capacitor
Imaginary Numbers

θ

Resistor

 For an inductor, ZL  jL L
2

 

 For a capacitor, ZC 
1

jC


1
C



2

. 

 For a resistor, ZR  R  R0 
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Sinusoidal Steady State Continued

For V(t)=Acosωt, using phasor notation for 
V(t)  and I(t)  I, our equation can be re-
written:

IIIV
1

11

1
11

10

tionrepresentaPhasor   toConverting

)(1)()()(

Cj
LjRA

dttI
Cdt

tdILRtItV


 

 

V  A0
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Sinusoidal Steady State Continued

])
)1(

[tancos(
)1(

)(

tion,representa  time theback to Converting

]
)1(

[tan
)1()1(

0
1

0

1

1
1

1

2

1
1

2
1

1

1
1

1

2

1
1

2
1

1
11

1
11

R
C

L
t

C
LR

AtI

R
C

L

C
LR

A

C
LjR

A

Cj
LjR

A












































I
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Homework
R3

1k

R1

1k a

b

Find the total resistance

R2
R45k

5k
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Homework

Find the total resistance Rab where 
R1 = 3Ω, R2 = 6Ω, R3 = 12Ω, R4 = 4Ω, R5 = 2Ω, R6 = 2Ω, R7 = 4Ω, R8 = 4Ω

R1

R7

R2

R8

R3

R4

R6

R5

a

b
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Homework

Find the total resistance Rab where 
R1 = 2Ω, R2 = 4Ω, R3 = 2Ω, R4 = 2Ω, R5 = 2Ω, R6 = 4Ω,

R6

R1

R2

R3

R4

R5

a

b
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Homework
Find the total resistance Rab for this infinite resistive network

R

R

R

R

R

R

a

b

R

R

R

R

R

R

R

R

R

R

R

continues to infinity
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HomeworkC3

1f

C1

1f
a

b

Find the total capacitance

C2
C45f

5f
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Homework

Find and plot the impedance Zab(jω) as a function of 
frequency.  Use Matlab to perform the plot.

R=1C=1

L=1

b

a
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Homework

R=1C=1L=1

b

a

Find and plot the impedance Zab(jω) as a function of 
frequency. Use Matlab to perform the plot.
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Homework
R2

5k

R1

1k

C1

1n

C2

5n

a

b

Find and plot the impedance Zab(jω) as function of ω. 
Use Matlab to perform the plot.
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Homework

The circuit shown is an equivalent circuit of an 
electrode where RD and CD are the resistance and 
capacitance associated with the interface of the 
electrode and the body and RS is the resistance of the 
device itself.  Find and plot the impedance Zab(jω) as 
function of ω. Use Matlab to perform the plot.

RS 500RD 29.5k

CD 53n

a b


