Electronic Systems

Lesson \#4

Chapter 1

Cascaded Amplifiers

- Cascading is when two or more amplifiers are connected from output of the first to the input of the second, and so on.

$A_{v}=\frac{v_{o 2}}{v_{i 1}}=\frac{v_{o 2}}{v_{i 2}} \times \frac{v_{i 2}}{v_{i 1}}=\frac{v_{o 2}}{v_{i 2}} \times \frac{v_{o 1}}{v_{i 1}}=A_{v 1} A_{v 2} \quad A_{i}=\frac{i_{o 2}}{i_{i 1}}=\frac{i_{o 2}}{i_{i 2}} \times \frac{i_{i 2}}{i_{i 1}}=\frac{i_{o 2}}{i_{i 2}} \times \frac{i_{o 1}}{i_{i 1}}=A_{i 1} A_{i 2}$
Since $v_{i 2}=v_{o 1}$
Since $i_{i 2}=i_{\text {ol }}$

Effects of Loading on Cascaded Amplifiers

$$
\begin{aligned}
& A_{v o l}=200 ; A_{v o 2}=100 \\
& R_{i 1}=1 M \Omega ; R_{o 1}=500 \Omega \\
& R_{i 2}=1500 \Omega ; R_{o 1}=100 \Omega \\
& R_{L}=100 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& A_{v 1}=A_{v o 1} \frac{R_{i 2}}{R_{i 2}+R_{o 1}}=200 \frac{1500}{1500+500}=150 \\
& A_{v 2}=A_{v o 2} \frac{R_{L}}{R_{L}+R_{o 2}}=100 \frac{100}{100+100}=50 \\
& A_{v}=A_{v 1} \times A_{v 2}=A_{v o 1} \frac{R_{i 2}}{R_{i 2}+R_{o 1}} \times A_{v o 2} \frac{R_{L}}{R_{L}+R_{o 2}} \\
& =A_{v o 1} A_{v o 2} \frac{R_{i 2}}{R_{i 2}+R_{o 1}} \times \frac{R_{L}}{R_{L}+R_{o 2}}=200 \times 100 \times \frac{3}{4} \times \frac{1}{2}=7500
\end{aligned}
$$

First Stage

$$
\begin{aligned}
& A_{i 1}=\frac{i_{o 1}}{i_{i 1}}=\frac{v_{o 1} / R_{i 2}}{v_{i 1} / R_{i 1}}=A_{v 1} \frac{R_{i 1}}{R_{i 2}}=150 \times \frac{10^{6}}{1500}=1 \times 10^{5} \\
& A_{i 2}=\frac{i_{o 2}}{i_{i 2}}=\frac{v_{o 2} / R_{L}}{v_{i 2} / R_{i 2}}=A_{v 2} \frac{R_{i 2}}{R_{L}}=50 \times \frac{1500}{100}=750 \\
& A_{i}=A_{i 1} \times A_{i 2}=A_{v 1} \frac{R_{i 1}}{R_{i 2}} \times A_{v 2} \frac{R_{i 2}}{R_{L}} \\
& =A_{v 1} A_{v 2} \frac{R_{i 1}}{R_{L}}=150 \times 50 \times \frac{10^{6}}{100}=75 \times 10^{6}
\end{aligned}
$$

$$
G_{1}=A_{v 1} A_{i 1}=150 \times 10^{5}=1.5 \times 10^{7} ; G_{2}=A_{v 2} A_{i 2}=50 \times 750=37.5 \times 10^{3} ; G=G_{1} \times G_{2}=1.5 \times 10^{7} \times 37.5 \times 10^{3}=56.25 \times 10^{11}
$$

$$
\text { BME } 372 \text { Electronics I - }
$$

J.Schesser

A Simplified Model of Two Cascaded Amplifiers

First Stage

Equivalent Gain $=$
$A_{v o}^{\prime}=\frac{v_{o 2}}{v_{i 1}}=\frac{A_{v o 2} v_{i 2}}{v_{i 1}}=\frac{A_{v o 2} v_{o 1}}{v_{i 1}}=\frac{A_{v o 2} A_{v o 1}}{v_{i 1}} \frac{R_{i 2}}{R_{i 2}+R_{o 1}} v_{i 1}$
$=A_{v o 2} A_{v o 1} \frac{R_{i 2}}{R_{i 2}+R_{o 1}}$
Equivalent Output Impedance $=R^{\prime}{ }_{o}=R_{o 2}$

Single Stage

Equivalent Input Impedance $=R^{\prime}{ }_{i}=R_{i 1}$

Power Supply Efficiency

- The power required to support the gain of an amplifier comes from DC power supplies connected to the amplifier
- The total average power supplied by the DC power supplies

$$
P_{D C}=V_{A A} I_{A}+V_{B B} I_{B}
$$

- The DC supplies are connected internally to the amplifier.

Power Supplies and Efficiency

- In addition to the DC power, there is power from the source which is delivered to the input of the amplifier, P_{i}. (note this not the total power provided by this source)
- Therefore, the total input power is $P_{D C}+P_{i}$
- A portion of this power is used to provide the gain and is delivered the output load, P_{L}
- The remainder of this power is dissipated by the components of the amplifier, P_{d}

$$
P_{D C}+P_{i}=P_{d}+P_{L}
$$

- The amount of from the DC source delivered to the load is called the power efficiency, η

$$
\eta=P_{L} / P_{D C}
$$

$P_{i}=\frac{v_{i}{ }^{2}}{R_{i}}$

Power Supply Efficiency

$v_{i}=v_{s} \frac{R_{i}}{R_{i}+R_{s}}=2 m \frac{100 k}{200 k}=1 \mathrm{mv}$
$P_{i}=\frac{v_{i}^{2}}{R_{i}}=\frac{1 \times 10^{-6}}{10^{5}}=10^{-11}=10 \mathrm{pW}$
$P_{o}=\frac{v_{o}{ }^{2}}{R_{L}}$
$v_{o}=A_{v o} v_{i} \frac{R_{L}}{R_{L}+R_{o}}=10^{4} \times 1 \mathrm{~m} \times \frac{8}{8+2}=8 \mathrm{~V}$
$P_{o}=\frac{v_{o}{ }^{2}}{R_{L}}=\frac{64}{8}=8 \mathrm{~W}$
$P_{D C}=V_{A A} I_{A A}+V_{B B} I_{B B}=15 \times 1+15 \times 0.5=22.5 \mathrm{~W}$
$\eta=\frac{P_{o}}{P_{D C}}=\frac{8}{22.5}=35.6 \%$
$P_{d}=P_{D C}+P_{i}-P_{o}=22.5+10 p-8 \approx 14.5 \mathrm{~W}$
Also the source resistor dissipates some power as well
$i_{i}=\frac{v_{i}}{R_{i}}=\frac{1 \mathrm{~m}}{100 k}=10^{-8} ; i_{i}{ }^{2} R_{s}=10^{-16} 100 \mathrm{k}=10^{-11}=10 \mathrm{pW}$

(But we should have known this already!!!! How?)

Decibel Notation

- A logarithmic scale is sometimes easier to use:

$$
\begin{aligned}
& -G_{d B}=10 \log G \\
& \text { - And if } G=G_{l} G_{2} \text {; then } G_{d B}=G_{1 d B}+G_{2 d B}
\end{aligned}
$$

- And to convert voltage and current to dBs .

$$
\begin{aligned}
& -A_{v d B}=20 \log \left|A_{v}\right| \\
& -A_{i d B}=20 \log \left|A_{i}\right|
\end{aligned}
$$

Other Amplifier Models

- Voltage-Amplifier
- Open-circuit Voltage Gain $v_{o}=A_{v o} v_{i}$

Other Amplifier Models

- Current-Amplifier
- Short Circuit Current Gain $i_{o}=A_{i s c} i_{i}$

- This is just the Norton Equivalent of the VoltageAmplifier since

$$
\begin{gathered}
V_{o c}=i_{o} R_{o}=A_{i s c} i_{i} R_{o}=A_{v o} v_{i}=A_{v o} i_{i} R_{i} \\
A_{i s c} R_{o}=A_{v o} R_{i} \\
A_{i s c}=A_{v o} R_{i} / R_{o}
\end{gathered}
$$

Other Amplifier Models

- Transconductance-Amplifier
- Short Circuit Transconductance Gain $i_{o s c}=G_{m s c} v_{i}$

Other Amplifier Models

- Transresistance - Amplifier - OpenCircuit Transresistance Gain $v_{o s c}=R_{m o c} i_{i}$

Ideal Amplifier Models

- What is an ideal amplifier?
- Let's look at our non-ideal Voltage amplifier:
- We saw that the output voltage is a function of the
 load and the output resistance.
- We saw that the input voltage is a function of the source resistance and the input resistance.

$$
\begin{aligned}
& v_{o}=A_{v o} v_{i} \frac{R_{L}}{R_{L}+R_{o}} \\
& v_{i}=v_{s} \frac{R_{i}}{R_{i}+R_{s}}
\end{aligned}
$$

- This also means that the gain from the source to the output is a function of all four

$$
v_{o}=A_{v o} v_{s} \times \frac{R_{i}}{R_{i}+R_{s}} \times \frac{R_{L}}{R_{L}+R_{o}}
$$ resistors.

Ideal Amplifier Models

- Ideally, we would like the gain to be equal to the open-circuit gain of the amplifier
- this will be when the maximum benefit occurs, since the gain will be independent of the input and
 output circuitry that is connected to the amplifier.
- We can't always choose the source resistance or the output resistance but we have control over the parameters of the amplifier.
- What happens if we make R_{i} infinite and R_{o} zero?

$$
\begin{aligned}
& v_{o}=A_{v o} v_{s} \times \frac{R_{i}}{R_{i}+R_{s}} \times \frac{R_{L}}{R_{L}+R_{o}} \\
& \approx A_{v o} v_{s} \times \frac{\infty}{\infty+R_{s}} \times \frac{R_{L}}{R_{L}+0}=A_{v o} v_{s} \times 1 \times 1 \\
& =A_{v o} v_{s}
\end{aligned}
$$

- These are the conditions for making a Voltage Amplifier an Ideal Amplifier

Ideal Amplifiers

Amplifier Type	Input Impedance	Output Impedance	Gain
Voltage	∞	0	$A_{v o}$
Current	0	∞	$A_{i s c}$
Trans- conductance	∞	∞	$G_{m s c}$
Trans- resistance	0	0	$R_{m o}$

For an exercise, show that this table of ideal amplifier characteristics is correct

Frequency Response

- In general, the signals that we apply to amplifier are made up of difference frequencies.
- ECG: 0.01 to 250 Hz
- EOG 0.1 to 50 Hz
- EEG 0 to 150 Hz
- EMG 0 to 10 k Hz
- Audible Sounds: 20 to 15 kHz
- Video: DC to 4.5 MHz
- AM radio: 540 k to 1600 kHz
- FM radio: 88 M to 108 M Hz
- Therefore, we need to look at a spectrum (of frequencies) and how the spectrum is affected by the amplifier design
- Gain is now a complex number since both the amplitude and phase of an input signal can be affected.

Frequency Response

- We look at the spectrum in terms of regions or bands:
- Low, mid, and high frequency bands

Frequency Response

- We define parameters associated with the spectrum of the output of an amplifier
- Half power frequencies or (3 dB points):
- f_{L} low frequency 3 db point
- f_{H} High frequency 3 db point
- Bandwidth (the distance in frequency

Different Types of Amplifiers

- Low pass amplifier - Let's lower frequencies pass; rejects higher frequencies

- High pass amplifier - Let's higher frequencies pass; rejects lower frequencies

BME 372 Electronics I-
J.Schesser

Frequency Response

- Band pass amplifier - Let's a narrow band frequencies pass; rejects higher frequencies

Frequency Response

- Coupling one stage to the next affects the frequency response since stages can be coupled either:
- directly: DC Coupling
- Using a capacitor when we don't want the DC to be transferred from one stage to the next: AC Coupling
- DC coupling yields a frequency response similar to a low pass filter.
- AC coupling produces a band pass amplifier
$-f_{\mathrm{L}}$ is a function of the circuit elements using in the design

Frequency Response

- High Frequencies are affected by the small internal capacitances of the non-linear devices we use (e.g., transistors) and any stray capacitances that appear in parallel with the signal path
- Since the impedance of a capacitor is inversely proportion to the frequency and capacitive value, the smaller the frequency or the smaller the capacitance the higher the impedance
- Therefore, small capacitances will then look like open circuits
- However, as the frequency increases these impedances become smaller and since they are in parallel with the signal path, they can short out the signal

Frequency Response

- For digital signals (pulses), we also look in the time domain (as opposed to the frequency domain) to see how the amplifier has affected the signal.
- Usually pulses show a slow rise and fall. Sometimes they show ringing.
- The rise time can be shown to
 be a function of the bandwidth, B, of the amplifier such that

$$
t_{r} \approx 0.35 / B
$$

Differential Amplifiers

- Output of the amplifier is a function of the difference of the inputs:

$$
v_{o}=A_{d}\left(v_{i 1}-v_{i 2}\right)
$$

- However, most real Differential Amplifier are affected by the average of the input and we define the common mode input signal

$$
v_{\mathrm{icm}}=1 / 2\left(v_{i 1}+v_{i 2}\right)
$$

- Therefore, $v_{o}=A_{d}\left(v_{i l}-v_{i 2}\right)+A_{m} v_{\mathrm{icm}}$ and the ratio of A_{d} to A_{m} is called the common mode rejection ratio

BME 372 Electronics I -
J.Schesser

Uses of the Differential Amplifier

BME 372 Electronics I -
J.Schesser

Common-Mode Rejection Ratio

$$
\begin{aligned}
& v_{o}=A_{d} v_{i d}+A_{c m} v_{i c m} \\
& C M R R=20 \log \frac{\left|A_{d}\right|}{\left|A_{c m}\right|}
\end{aligned}
$$

This is usually measured at a given frequency, for example at 60 Hz

For a ECG amplifier, if the $A_{d}=1000, v_{i d}=1 \mathrm{mV}, \& v_{i c m}=100 \mathrm{~V} @ 60 \mathrm{~Hz}$; calculate the CMRR when it is desired that the common mode output of the differential amp is 1% or less than the differential output.
$v_{o d}=A_{d} v_{i}=1000 \times 1 \mathrm{~m}=1 \mathrm{~V}$
$v_{\text {ocm }}<.01 \times 1=0.01 \mathrm{~V}$
$A_{c m}=\frac{v_{o c m}}{v_{i c m}}=\frac{0.01}{100}=10^{-4} \Rightarrow 20 \log 10^{-4}=-80 \mathrm{~dB}$
$C M R R=20 \log \frac{\left|A_{d}\right|}{\left|A_{c m}\right|}=20 \log \frac{1000}{10^{-4}}=20 \log 10^{7}=140 d B$

Homework

- Probs 1.30, 1.31, 1.35, 1.36, 1.37, 1.55, $1.56,1.59,1.60,1.61$

