
#### Feedback and Oscillators

Lesson #13 Feedback Section 9.1-2

# Feedback

- Types of Feedback
  - Positive: aids the input signal
  - Negative: reduces the input signal
- Positive Feedback Benefits
  - Oscillators
- Negative Feedback Benefits
  - Stabilization of Gain
  - Reduction of Nonlinear Distortion
  - Reduction of noise
  - Control of input and output impedances
  - Extension of Bandwidth
- Design of feedback amplifier to avoid unwanted oscillations

#### Closed-Loop Gain



J.Schesser

#### Problems With Positive Feedback

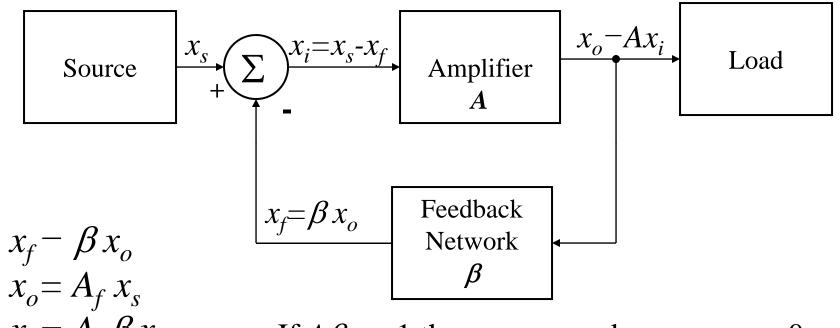
- If  $|A\beta| \le 1$  and  $A\beta$  is negative:
  - then  $1+A\beta \leq 1$ ; and  $A_f$  (closed-loop gain) > A (open-loop gain)
  - if  $A\beta = -1$ , then oscillations occur
  - POSITIVE FEEDBACK
- Example:
  - $A = -10, \beta = 0.0999 \implies A\beta = -0.999; 1 + A\beta = 0.001; A_f = -10^4$
  - A:  $-10 \rightarrow -9.9 \Rightarrow A\beta = -0.989$ ;  $1 + A\beta = 0.011$ ; then  $A_f: -10^4 \rightarrow -901$
  - For a 1% reduction in A there was a 91% reduction of  $A_f$
  - POOR GAIN STABILITY: worse than the original amplifier

# Problems (Continued)

- Another Example:
  - As Aβ → -1, A<sub>f</sub> → ∞ and this implies for a zero input signal an output signal can be generated and a signal will flow around the loop w/o an input ⇒ oscillations. This is ok if an oscillator design is desired.
  - Clearly, a high gain amplifier can be designed with positive feedback; however, care must be taken because any change in the design (temperature shifts increase the power supply voltages) may cause  $A\beta \rightarrow -1$  and oscillations result

## Gain Stabilization Using Negative Feedback

- For Negative Feedback Amplifiers are designed with  $A\beta >> 1$  and  $A_f \cong 1/\beta$ 
  - This is desirable since the value of  $\beta$  can be designed using solely stable passive components (e.g., resistors and capacitors)
  - On the other hand A is a function of active components (e.g., BJT, FET, etc.) whose operating point is highly dependent on temperature  $V_T$  and operating point (e.g., for a BJT  $r_{\pi} = V_T / I_{BQ}$  and  $g_m = \sqrt{2KP} \sqrt{W/L} \sqrt{I_{DQ}}$ )
  - This occurs for op amps


### Gain Stabilization Using Negative Feedback Continued

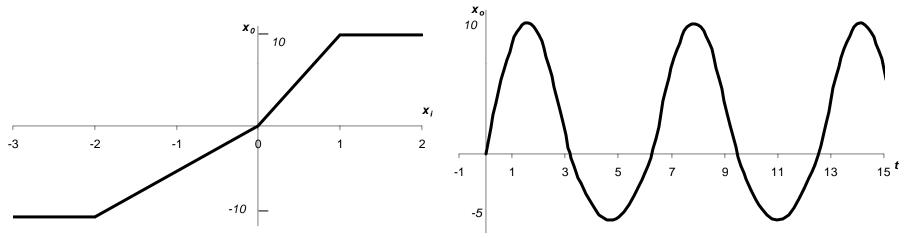
- *Example:*  $A = 10^4$  and  $\beta = 0.01 \Rightarrow A_f = 99$ 
  - If  $A \rightarrow 9000$ , then  $A_f \rightarrow 98.9$
  - For a 10% reduction in A there was only a 0.1% reduction of  $A_f$
- Therefore, we can design precision amplifiers using Negative Feedback

$$\frac{dA_{f}}{dA} = \frac{1 + A\beta - A\beta}{(1 + A\beta)^{2}} = \frac{1}{(1 + A\beta)^{2}}$$
$$dA_{f} = \frac{dA}{A} \frac{A}{(1 + A\beta)^{2}} = \frac{dA}{A} \frac{A_{f}}{1 + A\beta}$$
$$\frac{dA_{f}}{A_{f}} = \frac{dA}{A} \frac{1}{1 + A\beta}$$

- This states that for small fractional changes of  $A_f$  is the fractional change in A divided by  $1+A\beta$
- Clearly, if the loop gain  $A\beta >> 1$ changes of  $A_f$  are less than A

#### Summing-Point Constraint Revised

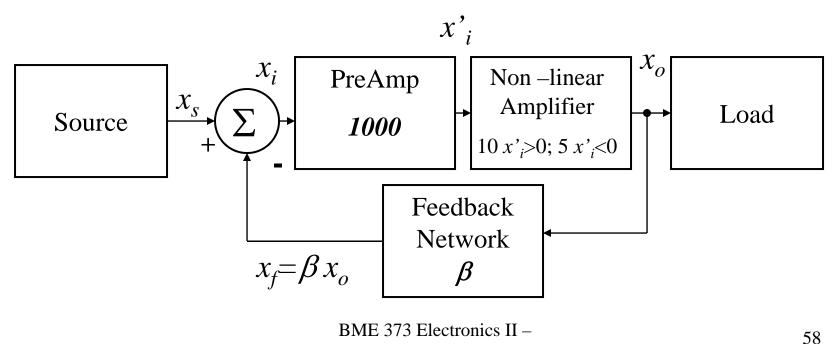



- $x_{o} A_{f} x_{s}$  $x_{f} = A_{f} \beta x_{s}$  $x_{f} = x_{s} \frac{A\beta}{1 + A\beta}$
- If  $A\beta >> 1$  then  $x_f \cong x_s$  and  $x_i = x_s x_f \cong 0$
- This is the summing point constraint
  - Here is how we can design operational amplifiers from negative feedback amplifiers with  $A\beta >> 1$

#### Examples

- Find  $A_f, x_o, x_f$  and  $x_i$  for a negative feedback amplifier with  $A=10^5$ ,  $\beta = 0.01$  and  $x_s 5 \sin(2000\pi t)$ -  $A_f = A / (1 + A\beta) = 10^5 / (1 + 10^5 * 0.01) = 99.9$ -  $x_o = A_f x_s = 499.5 \sin(2000\pi t)$ -  $x_f = \beta x_o = 4.995 \sin(2000\pi t)$ -  $x_i = x_s - x_f = .004995 \sin(2000\pi t)$
- What is the maximum value of  $A_f$  if we want it not to vary greater than  $\pm 1\%$  (and  $\pm 0.1\%$ ) for an amplifier with A =  $10^5 \pm 10\%$ 
  - $\Delta A/A = .10; \Delta A_f/A_f < .01$ 
    - $\Delta A_f / A_f = \Delta A / A * [1/(1+A\beta)]$
    - $A_f = A/(1+A\beta) \Longrightarrow A_f = A * \Delta A_f/A_f * (A/\Delta A) = 10^5 * .01/.1 = 10^4$
  - $A_f = A * \Delta A_f / A_f * (A / \Delta A) = 10^5 * .001 / .1 = 10^3$

### Reduction of Non-linear Distortion


• Assume we have an amplifier which has the following non-linear gain characteristics.



• If we want to reduce this distortion with an amplifier of  $A_f \cong 10$  and  $\beta = .1$ , we would need to have  $A\beta >> 1$ , but A = 10 and 5.

# Reduction of Non-linear Distortion (Continued)

- To solve this we can add a linear preamplifier of gain of 1000.
- The <u>cascade</u> has an open-loop gain of:  $10^4$  (=10<sup>3</sup>x10) for 0<  $x_o$ <10 and 5000 (=10<sup>3</sup>x5) for -10<  $x_o$ <0.
- And a closed loop gain of 9.99 for  $0 < x_o < 10$  and 9.98 for  $-10 < x_o < 0$ .



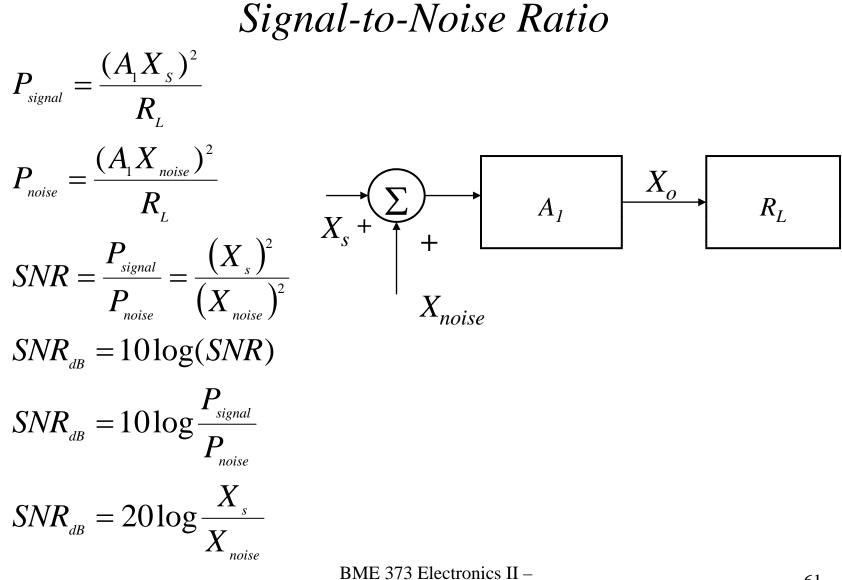
J.Schesser

## Compensation of Non-linear Distortion

• Let's look at the input signal at the amplifier:

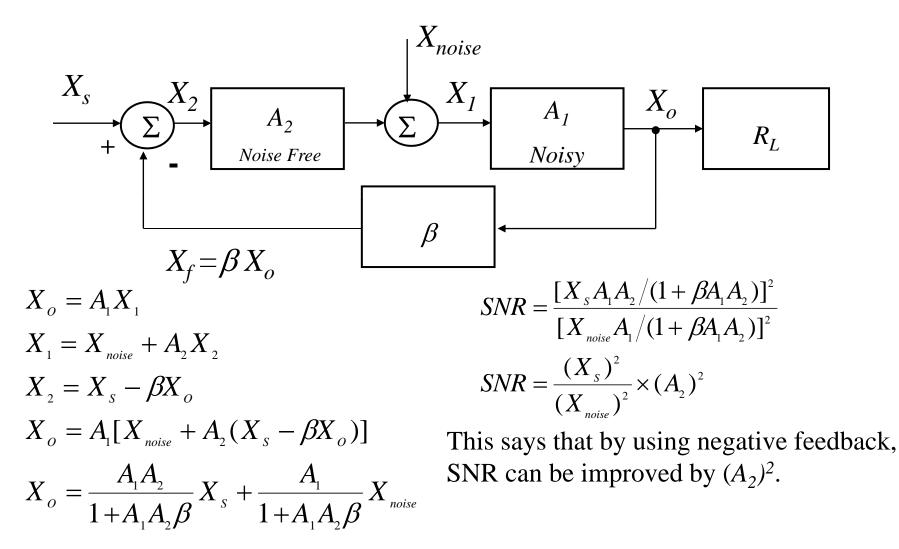
$$x_{i} = x_{s} - x_{f}$$

$$x_{i} = x_{s} - x_{s} \frac{A\beta}{1 + A\beta} = x_{s} \frac{1}{1 + A\beta}$$


$$x_{i} = x_{s} / (1 + 10^{4} \times .1) = x_{s} / 1001 \text{ for } 0 < x_{s} < 10$$

$$x_{i} = x_{s} / (1 + 5000 \times .1) = x_{s} / 501 \text{ for } -10 < x_{s} < 0$$

• We see that the negative feedback compensate for the non-linear distortion by altering (predistorting) the input signal to the amplifier.


# Noise Reduction

- Sources of Noise
  - Power-supply (60 cycle) hum
  - Coupling of non-wanted signals
  - Thermal noise in resistors (heat dissipation)
  - Shot noise (current flow may not be continuous)
- Signal-to-Noise Ratio
  - A way of quantifying the noise performance of a circuit
  - Desired power divided by the noise power
  - Given in terms of rms values of the signals and dBs



J.Schesser

#### SNR Analysis



#### Examples

• Power Supply output is 10 V rms and receives hum at .1 V rms. Compute the SNR in dB.

- SNR = 20 log(10/.1) = 40 dB

• Using a low noise amp we want to improve the SNR by 20 dB, what is the gain of the amp?

$$-SNR_{pre-amp} = SNR_{original}A^{2}$$

$$-SNR_{pre-amp \ db} = SNR_{original \ db} + 20 \ log A$$

$$-SNR_{pre-amp \ db} = SNR_{original \ db} + 20 \ dB$$

$$-20 \ log A = 20$$

$$-log A = 1$$

$$-A - 10$$

## Homework

• Effects of Feedback

– Problems: 9.1-3,5-9

- Reduction of Nonlinear Distortion and Noise
  - Problems: 9.10,16,18-20