Feedback and Oscillators

Lesson \#14
Impedances
Section 9.3-5

Types of Feedback

- Type of feedback (the output entity fed back):
- Voltage Feedback vs. Current Feedback
- βv_{o} vs. βi_{o}
- How it is achieved (the means to fed back the output to the input):
- Series (input voltage) Feedback vs. Parallel (input current) Feedback
$-v_{i}=v_{s}-v_{f}$ vs. $i_{i}=i_{s}-i_{f}$

Types of Feedback (Continued)

- Four Combinations

- Series Voltage: where amplifier input and output are voltages and, therefore, the gain parameter is a voltage gain, A_{v} and the feedback is a voltage, βv_{o}, which is proportional to the output voltage
- Series Current : where amplifier input is a voltage and its output is a current and, therefore, the gain parameter is a transconductance, G_{m}, and the feedback is a voltage βi_{o}, which is proportional to the output current
- Parallel Voltage: where amplifier input is a current and its output is a voltage and, therefore, the gain parameter is a transresistance gain, R_{m} and the feedback is a current, βv_{o}, which is proportional to the output voltage
- Parallel current: where amplifier input and output are currents and, therefore, the gain parameter is a current gain, A_{i} and the feedback is a current, βi_{o},which is proportional to the output current.

Types of Feedback Circuits

BME 373 Electronics II -

Feedback Relations for the 4 Types

- Since we derived the the feedback gain independent of whether the a current or voltage is fed back, then for each type:
- Series Voltage: $A_{v f}=\frac{v_{o}}{v_{s}}=\frac{A_{v}}{1+A_{v} \beta}$
- Series Current: $G_{m f}=\frac{i_{o}}{v_{s}}=\frac{G_{m}}{1+G_{m} \beta}$
- Parallel Voltage: $R_{m f}=\frac{v_{o}}{i_{s}}=\frac{R_{m}}{1+R_{m} \beta}$
- Parallel Current

$$
A_{t}=\frac{i_{o}}{i_{s}}=\frac{A_{i}}{1+A_{t} \beta}
$$

Input Impedance

$$
\begin{aligned}
& R_{i f}=\frac{v_{s}}{i_{s}} \\
& v_{s}=R_{i} i_{s}+v_{f}=R_{i} i_{s}+\beta x_{o} \\
& x_{o}=A v_{i} \\
& v_{i}=R_{i} i_{s} \\
& \therefore x_{o}=A R_{i} i_{s} \\
& v_{s}=R_{i} i_{s}+\beta A R_{i} i_{s} \\
& R_{i f}=\frac{v_{s}}{i_{s}}=R_{i}(1+\beta A)
\end{aligned}
$$

$$
\begin{array}{ll}
R_{i f}=\frac{v_{s}}{i_{s}} & i_{i}=\frac{i_{s}}{(1+\beta A)} \\
i_{f}=\beta x_{o} & v_{s}=R_{i} i_{i} \\
i_{i}=i_{s}-i_{f}=i_{s}-\beta x_{o} & \therefore v_{s}=\frac{R_{i}}{(1+\beta A)} i_{s} \\
x_{o}=A i_{i} & \therefore R_{i f}=\frac{v_{s}}{i_{s}}=\frac{R_{i}}{1+A \beta} \\
\therefore i_{i}=i_{s}-\beta A i_{i} &
\end{array}
$$

Output Impedance

$R_{\text {of }}=\frac{v_{\text {test }}}{i_{\text {test }}} \quad$ Voltage
$v_{\text {test }}=R_{o} i_{\text {test }}+A_{o c} X_{i}$
$x_{i}=x_{s}-x_{f}=x_{s}-\beta v_{\text {test }}$
$x_{s}=0$
$x_{i}=-\beta v_{\text {test }}$
$v_{\text {test }}=R_{o} i_{\text {test }}-A_{o c} \beta v_{\text {test }}$
$R_{o f}=\frac{v_{\text {test }}}{i_{\text {test }}}=\frac{R_{0}}{\left(1+\beta A_{o c}\right)}$

BME 373 Electronics II J.Schesser

Identifying Negative Feedback

- Determine the type of feedback: Voltage vs Current
- Determine how the feedback is applied: Series or Parallel
- Determine if the feedback is in opposition to how the input is applied.
- See if the feedback is applied to the inverting (subtractive) input of the amplifier.

Identifying Negative Feedback See the column on page 571

- Output
- In voltage feedback, the input terminals of the feedback network are in parallel with the load
- In current feedback, the input terminals of the feedback network are in series with the load
- Input
- If the feedback signal vanishes for a open circuit load, then current feedback
- If the feedback signal vanishes for a short circuit load, then voltage feedback

Identifying Negative Feedback (Continued)

$$
\begin{array}{ll}
v_{f}=\frac{R_{2}}{R_{1}+R_{2}} v_{o} & v_{f}=R_{f} i_{o} \\
\beta=\frac{R_{2}}{R_{1}+R_{2}} & \beta=R_{f}
\end{array}
$$

Identifying Negative Feedback (Continued)

$$
\overline{i_{f}}=\frac{v_{o}}{R_{f}}
$$

$$
\beta=\frac{1}{R_{f}}
$$

$$
i_{f}=-i_{o} \frac{R_{1}}{R_{f}+R_{1}} ; \text { since } v_{i} \approx 0
$$

$$
\underset{\text { mics II- }}{\beta=-\frac{R_{1}}{R_{t}+R_{1}}}
$$

Design of Feedback Amplifiers

- Determine what type of feedback is required and the value of β
- Select a circuit design
- Calculate the appropriate values of the circuit elements (i.e., resistors in the feedback network)

Design Example

- Design a feedback circuit which provides a voltage equal to 10 times the input source. Assume that the source has a resistance of $2 \mathrm{k} \Omega$ and the differential amplifier has an open circuit gain of 10^{4} with an input resistance of $5 \mathrm{k} \Omega$ and an output resistance of $R_{o}=100 \Omega$

$$
\begin{aligned}
& A_{f f}=A_{f} \cong 1 / \beta=10 \\
& \beta=0.1 \\
& A=A_{v o}=10^{4} \\
& A \beta=10^{4} \times 0.1=1000 \\
& \beta=\frac{R_{2}}{R_{1}+R_{2}}=.1 \\
& R_{1} / R_{2}=9 \\
& \text { Choose } R_{1}+R_{2}>R_{O} \text { to reduce any loss of gain } \\
& \quad \text { due to loading }
\end{aligned}
$$

Homework

- Impedances
- Problems: 9.22, 27-36
- Practical Networks
- Problems: 9.38

