
Digital Logic Circuits

Lesson #8 FET Gates Sections 6.3-9

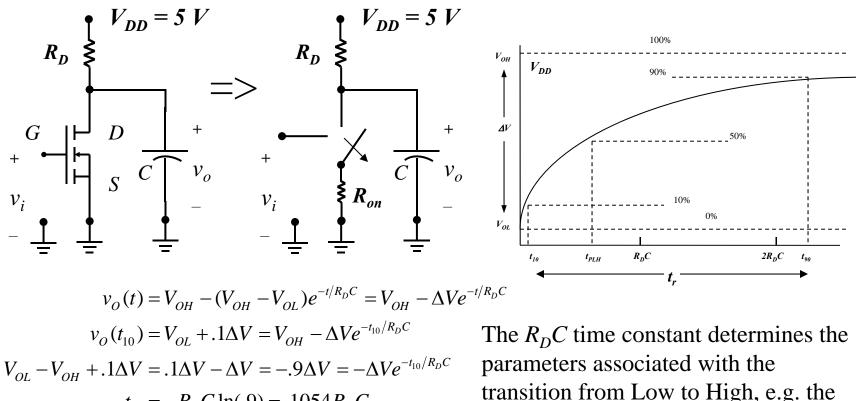
Resistor-Pull-up NMOS Inverter

Let's find R_{on} and the pull up resistor to make the static power in the low output state to 0.25 mW. Assume $V_{to}=1$ V, $KP=50\mu A/V^2$, $V_{OL}=.5$ V, $V_{OH}=V_{DD}=5$ V

 $P_{static} = 0.25 \times 10^{-3} = I_{DS}V_{DD} \qquad R_{on} = \frac{V_{OL}}{V_{DD}} (R_D + R_{on})$ $I_{DS} = \frac{0.25 \times 10^{-3}}{5} = 50 \mu A \qquad = \frac{.5}{5}100 \times 10^3 = 10k\Omega$ $I_{DS} = \frac{V_{DD}}{R_{on} + R_D} = \frac{5}{R_{on} + R_D} = 50 \mu A \qquad K = \frac{1}{2R_{on}(v_i - V_{to})}$ $R_{on} + R_D = \frac{5}{50 \times 10^{-6}} = 100k\Omega \qquad = 12.5 \mu A/V^2$ $R_D = 90k\Omega$

Where R_{on} represents the resistance of the NMOS device when the device is on.

$$V_{OH} = V_{DD} = 5 V$$
$$V_{OL} = V_{DD} \frac{R_{on}}{R_{on} + R_{D}}$$
$$v_{GS} = v_{i}$$
$$v_{DS} = v_{o}$$


When v_o is close to zero then FET is in the Triode mode, recall:

$$i_{DS} = K[2(v_{GS} - V_{io})v_{DS} - v_{DS}^{2}] \approx K[2(v_{GS} - V_{io})v_{DS}]$$

$$K = \left(\frac{W}{L}\right)\frac{KP}{2}$$

$$R_{on} = \frac{v_{DS}}{i_{DS}} = \frac{v_{DS}}{K[2(v_{GS} - V_{io})v_{DS}]} = \frac{1}{K[2(v_{GS} - V_{io})]}$$
To make R_{on} small, we need to design the FET to have a large K .

Dynamic Response of the Resistor-Pull-up NMOS Inverter Low to High Transition

$$t_{10} = -R_D C \ln(.9) = .1054 R_D C$$

$$t_{90} = -R_D C \ln(.1) = 2.3025 R_D C$$

$$t_r = 2.2 R_D C$$

$$t_{PLH} = -R_D C \ln(.5) = 0.6931 R_D C$$

transition from Low to High, e.g. the rise time.

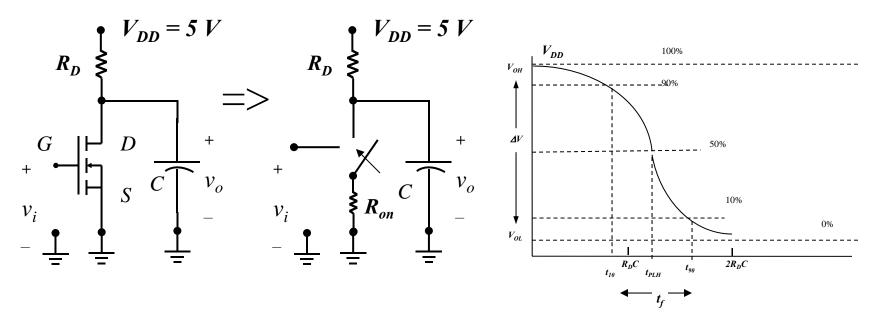
We then say that the capacitor charges to V_{OH} through the pull up resistor R_D

Calculation of $v_o(t)$

Using Kirchoff's Current Law at the output node, $v_o(t)$:

$$C \frac{dv_o(t)}{dt} + 0 = \frac{V_{DD} - v_o(t)}{R}$$
$$C \frac{dv_o(t)}{dt} + \frac{v_o(t)}{R} = \frac{V_{DD}}{R} = \frac{V_{OH}}{R}$$

Let's assume :


$$v_o(t) = A_1 e^{-\alpha t} + A_2$$

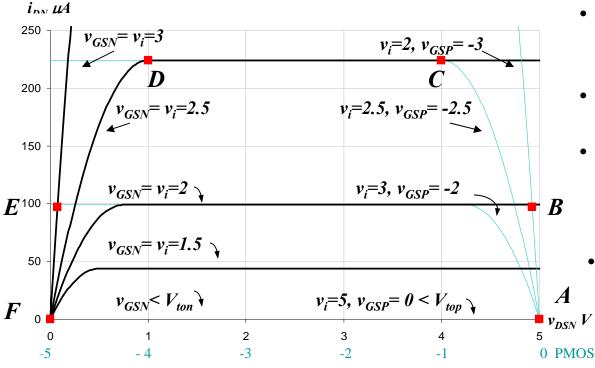
$$\therefore \dot{v}_o(t) = -\alpha A_1 e^{-\alpha t}$$

$$-\alpha A_1 e^{-\alpha t} C + \frac{A_1 e^{-\alpha t} + A_2}{R} = \frac{V_{OH}}{R}$$

$$\therefore \alpha = \frac{1}{RC}; A_2 = V_{OH}$$

Since $v_o(0) = V_{OL}$
 $v_o(0) = A_1 + V_{OH} = V_{OL}; A_1 = -(V_{OH} - V_{OL})$
 $v_o(t) = -(V_{OH} - V_{OL})e^{-t/RC} + V_{OH}$

Dynamic Response of the Resistor-Pull-up NMOS Inverter High to Low Transition



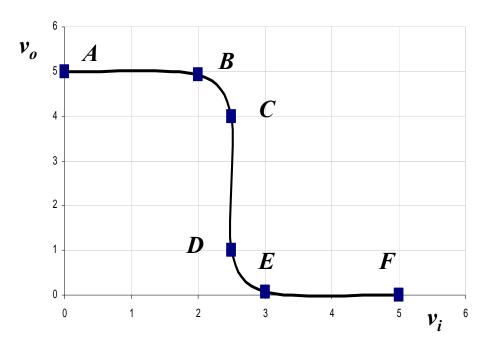
In this case, the capacitor discharges through the parallel combination of R_D and R_{on} . However, since $R_{on} < R_D$, the fall time from High to Low is usually shorter than the rise time from Low to High. In our example, $R_D = 90k$ and $R_{on} = 10k$ and the time constant for Low to High = 10kC while the time constant for High to Low is 9KC which yields 10% faster fall time than rise time. However, the overall performance is governed by the slowest time.

Complementary MOS CMOS

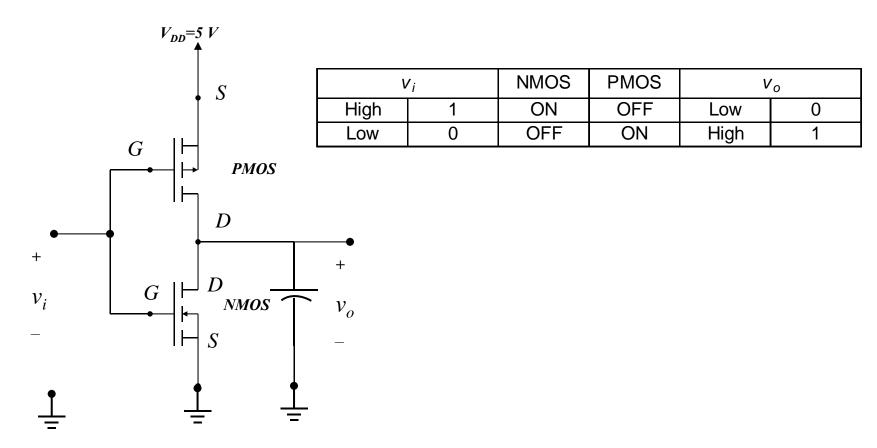
Taking NMOS (n-channel) and PMOS (p-channel) and ٠ $V_{DD}=5 V$ using them in a complementary fashion (same characteristics) such that the static power is always zero S (there will, of course, be dynamic power dissipated). Note that $V_{GSP} = v_i - V_{DD}$ and $V_{GSN} = v_i$ • G **PMOS** $V_{DD}=5 V$ $V_{DD}=5 V$ PMOS OFF PMOS ON D when $v_i > 0$ when $v_i = 0$ and $=V_{DD}=V_H$ $v_{GSP} = -V_{DD}$ and $v_{GSP} \approx 0$ $v_o = V_{DD} = V_H$ D G But no static power \mathcal{V}_i **NMOS** v_o S NMOS OFF NMOS ON when when $v_i =$ $v_i = v_{GSN} = \theta$ $v_{GSN} > \theta$ $=V_H = V_{DD}$ $v_o = \theta$ Capacitance of the gates But no static power

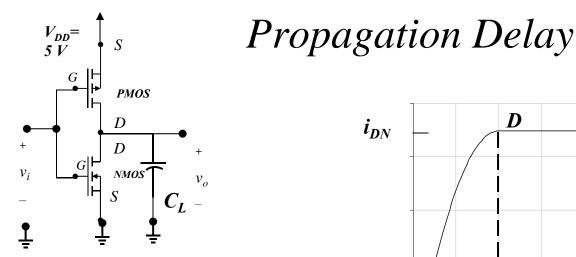
Graphical Analysis

- For CMOS, the load line of the NMOS is the characteristic curves of the PMOS.
- Let view the operation as v_i goes from 0 to 5 V
- Point A: $v_i = 0$, the NMOS is cutoff since $v_i = v_{GSN} < V_{ton}$; the PMOS is conducting since $v_{GSP} =$ $v_i - V_{DD} = -V_{DD}$
 - Point B: $v_i=2$ and is the intersection of $v_{GSN} = 2$ and $v_{GSP}=-3$ where the NMOS is in saturation and the PMOS is in the triode region.


77

• Points C through D: $v_i=2.5$ and is the intersection of $v_{GSN}=2.5$ and $v_{GSP}=-3$ where the NMOS and the PMOS are both in saturation.

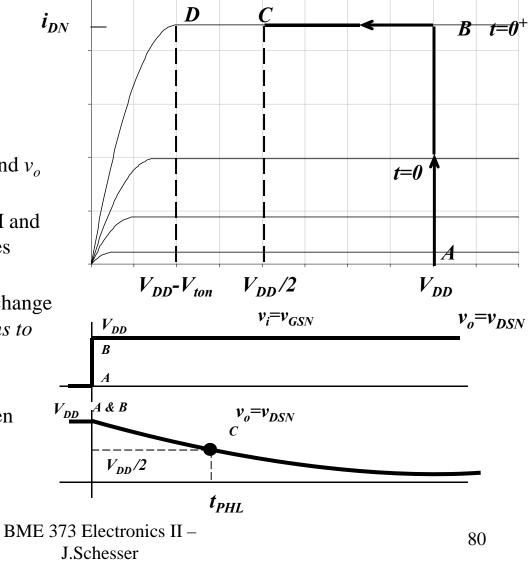

- Point E $v_i=3$ and is the intersection of $v_{GSN}=3$ and $v_{GSP}=-2$ where the NMOS is in the triode region and the PMOS is in the saturation region.
- Point F: $v_i = 5$, the NMOS is conducting but the PMOS is cutoff since $v_{GSP} < V_{top} = v_i V_{DD} = 0$


Transfer Characteristics

- These characteristics approach the ideal characteristics we discuss previously.
- For $v_i < V_{ton}$, $v_o = V_{DD}$
- For $v_i > V_{DD}$ $/V_{top}/$, $v_o = 0$
- The transfer characteristics fall abruptly at $v_i = V_{DD}/2$

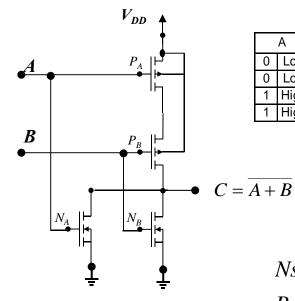
CMOS Inverter Truth Table

• At t=0- (just before the switch, $v_i = 0$ and $v_o = V_{DD}$. (Point A)


- At *t*=0, *v_i* switches from LOW to HIGH and the NMOS goes ON and the PMOS goes OFF. (Transition from Point A to B)
- Because the voltage across C_L can not change instantly, at $t=0+v_o=V_{DD}$ and C_L begins to discharge through the NMOS at

$$\dot{E}_{DN} = \left(\frac{W}{L}\right) \frac{KP_n}{2} \left(V_{DD} - V_{ton}\right)^2$$

• Assuming that $V_{DD}/2$, the t_{PHL} point, then


$$t_{PHL} \approx \frac{C_{L} \Delta V}{i_{DN}} = \frac{C_{L} (V_{DD}/2)}{(W/L)_{n} (KP_{n}/2) (V_{DD} - V_{ton})^{2}}$$

CMOS NOR and NAND GATES

NOR Gate

A		В		NA	PA	NB	PB	Nside	Pside	Vo	
0	Low	0	Low	OFF	ON	OFF	ON	OFF	ON	High	1
0	Low	1	High	OFF	ON	ON	OFF	ON	OFF	Low	0
1	High	0	Low	ON	OFF	OFF	ON	ON	OFF	Low	0
1	High	1	High	ON	OFF	ON	OFF	ON	OFF	Low	0

Nside = NA + NB $Pside = PA \bullet PB$

 $Nside = NA \bullet NB$

Pside = PA + PB

NAND Gate

									•	•	
	A		В	NA	PA	NB	PB	Nside	Pside	Vo	
0	Low	0	Low	OFF	ON	OFF	ON	OFF	ON	High	1
0	Low	1	High	OFF	ON	ON	OFF	OFF	ON	High	1
1	High	0	Low	ON	OFF	OFF	ON	OFF	ON	High	1
1	High	1	High	ON	OFF	ON	OFF	ON	OFF	Low	0

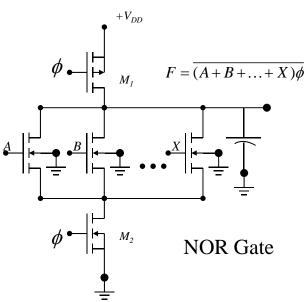
BME 373 Electronics II – J.Schesser $C = \overline{AB}$

 V_{DD}

 P_A

 N_A

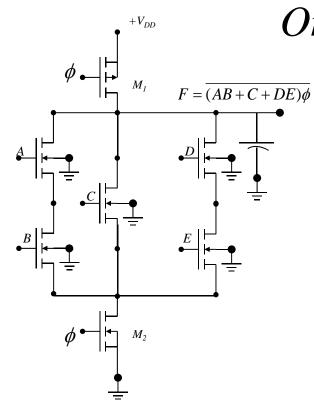
 N_B


 P_B

A

B

Dynamic Logic


- In this circuit, only when the clock, ϕ , is high will the output be dependent on the inputs, *A*, *B*, ... *X*.
- When ϕ is low, M1 is ON, M2 is OFF and capacitor will be charged to VDD.
- When ϕ is high, M1 is OFF, M2 is ON, and the capacitor will discharge through the NMOS transistors provided that at least on of the inputs is ON.

	A	B X		X	¢		NA	NB	NX	Νφ	Ρφ	Nside	Pside	V _o	
0	Low	0	Low	0	Low	0	Low	OFF	OFF	OFF	OFF	ON	OFF	ON	High 1
0	Low	0	Low	1	High	0	Low	OFF	OFF	ON	OFF	ON	OFF	ON	High 1
0	Low	1	High	0	Low	0	Low	OFF	ON	OFF	OFF	ON	OFF	ON	High 1
0	Low	1	High	1	High	0	Low	OFF	ON	ON	OFF	ON	OFF	ON	High 1
1	High	0	Low	0	Low	0	Low	ON	OFF	OFF	OFF	ON	OFF	ON	High 1
1	High	0	Low	1	High	0	Low	ON	OFF	ON	OFF	ON	OFF	ON	High 1
1	High	1	High	0	Low	0	Low	ON	ON	OFF	OFF	ON	OFF	ON	High 1
1	High	1	High	1	High	0	Low	ON	ON	ON	OFF	ON	OFF	ON	High 1
0	Low	0	Low	0	Low	1	High	OFF	OFF	OFF	ON	OFF	OFF	OFF	High 1
0	Low	0	Low	1	High	1	High	OFF	OFF	ON	ON	OFF	ON	OFF	Low 0
0	Low	1	High	0	Low	1	High	OFF	ON	OFF	ON	OFF	ON	OFF	Low 0
0	Low	1	High	1	High	1	High	OFF	ON	ON	ON	OFF	ON	OFF	Low 0
1	High	0	Low	0	Low	1	High	ON	OFF	OFF	ON	OFF	ON	OFF	Low 0
1	High	0	Low	1	High	1	High	ON	OFF	ON	ON	OFF	ON	OFF	Low 0
1	High	1	High	0	Low	1	High	ON	ON	OFF	ON	OFF	ON	OFF	Low 0
1	High	1	High	1	High	1	High	ON	ON	ON	ON	OFF	ON	OFF	Low 0

BME 373 Electronics II –

J.Schesser

One More Example • Using this design, we can design other logic functions.

								A	В	С	D	E	Р	Ν]	
ϕ	А	В	С	D	Е	M2	M1	NA	NB	NC	NC	NE	(NA*NB+NC+ND*NE)M2	M1	F	
1	0	0	0	0	0	ON	OFF	OFF	ON	1						
1	0	0	0	0	1	ON	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF	ON	1
1	0	0	0	1	0	ON	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	1
1	0	0	0	1	1	ON	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	OFF	0
1	0	0	1	0	0	ON	OFF	OFF	OFF	ON	OFF	OFF	ON	OFF	OFF	0
1	0	0	1	0	1	ON	OFF	OFF	OFF	ON	OFF	ON	ON	OFF	OFF	0
1	0	0	1	1	0	ON	OFF	OFF	OFF	ON	ON	OFF	ON	OFF	OFF	0
1	0	0	1	1	1	ON	OFF	OFF	OFF	ON	ON	ON	ON	OFF	OFF	0
1	0	1	0	0	0	ON	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	ON	1
1	0	1	0	0	1	ON	OFF	OFF	ON	OFF	OFF	ON	OFF	OFF	ON	1
1	0	1	0	1	0	ON	OFF	OFF	ON	OFF	ON	OFF	OFF	OFF	ON	1
1	0	1	0	1	1	ON	OFF	OFF	ON	OFF	ON	ON	ON	OFF	OFF	0
1	0	1	1	0	0	ON	OFF	OFF	ON	ON	OFF	OFF	ON	OFF	OFF	0
1	0	1	1	0	1	ON	OFF	OFF	ON	ON	OFF	ON	ON	OFF	OFF	0
1	0	1	1	1	0	ON	OFF	OFF	ON	ON	ON	OFF	ON	OFF	OFF	0
1	0	1	1	1	1	ON	OFF	OFF	ON	ON	ON	ON	ON	OFF	OFF	0
1	1	0	0	0	0	ON	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	ON	1
1	1	0	0	0	1	ON	OFF	ON	OFF	OFF	OFF	ON	OFF	OFF	ON	1
1	1	0	0	1	0		OFF	ON	OFF	OFF	ON	OFF	OFF	OFF	ON	1
1	1	0	0	1	1	ON	OFF	ON	OFF	OFF	ON	ON	ON	OFF	OFF	0
1	1	0	1	0	-	ON	OFF	ON	OFF	ON	OFF	OFF	ON	OFF	OFF	0
1	1	0	1	0	1	ON	OFF	ON	OFF	ON	OFF	ON	ON	OFF	OFF	0
1	1	0	1	1	0	ON	OFF	ON	OFF	ON	ON	OFF	ON	OFF	OFF	0
1	1	0	1	1	1	••••	OFF	ON	OFF	ON	ON	ON	ON	OFF	OFF	0
1	1	1	0	0	0	ON	OFF	ON	ON	OFF	OFF	OFF	ON	OFF	OFF	0
1	1	1	0	0	1	ON	OFF	ON	ON	OFF	OFF	ON	ON	OFF	OFF	0
1	1	1	0	1	0		OFF	ON	ON	OFF	ON	OFF	ON	OFF	OFF	0
1	1	1	0	1	1		OFF	ON	ON	OFF	ON	ON	ON	OFF	OFF	0
1	1	1	1	0	0	-	OFF	ON	ON	ON	OFF	OFF	ON	OFF	OFF	0
1	1	1	1	0		ON	OFF	ON	ON	ON	OFF	ON	ON	OFF	OFF	0
1	1	1	1	1	0	ON	OFF	ON	ON	ON	ON	OFF	ON	OFF	OFF	0
1	1	1	1	1	1	ON	OFF	ON	ON	ON	ON	ON	ON	OFF	OFF	0

Homework

- Resistor-Pull-Up NMOS Inverter
 - Problem: 6.32
- Dynamic Response
 - Problem: 6.40
- CMOS Inverter
 - Problems: 6.48-6.50
- Propagation Delay
 - Problem: 6.58
- CMOS Gates
 - Problems: 6.69-6.70, 6.71-73