Some Review of Signals and Systems

Lecture #1 1.1 – 1.3

BME 333 Biomedical Signals and Systems - J.Schesser

What Is this Course All About ?

- To Gain an Appreciation of the Various Types of Signals and Systems
- To Analyze The Various Types of Systems
- To Learn the Skills and Tools needed to Perform These Analyses.

What are Signals?

- A Signal is a term used to denote the information carrying property being transmitted to or from an entity such as a device, instrument, or physiological source
- Examples:
 - Radio and Television Signals
 - Telecommunications and Computer Signals
 - Biomedical Engineering Signals

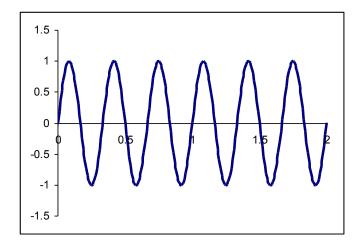
What is a System?

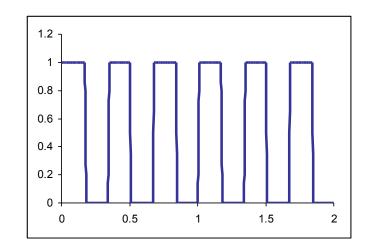
- A System is a term used to denote an entity that processes a Signal
- A System has inputs and outputs
- Examples
 - Amplifiers, Radios, Televisions
 - Telephone, Modem, Computer
 - Oscilloscopes, EKG, EEG, EMG

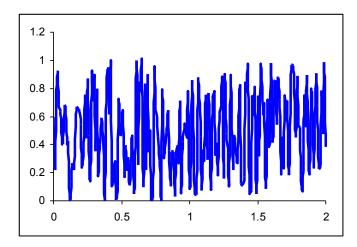
How do we describe Signals?

- Signals are associated with an independent variable(s): e.g., time, single or multivariate spatial coordinate
 - Most instrumentation signals have time as their independent variable
 - A digital photograph or image has spatial coordinates as its independent variables
- Signal Independent Variables can be either Continuous or Discrete

Continuous-Time Signals



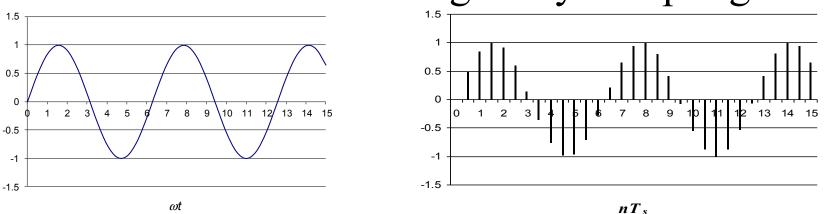




BME 333 Biomedical Signals and Systems - J.Schesser

Discrete-Time Signals

A Discrete-Time Signal can be obtained from a Continuous-Time signal by Sampling.



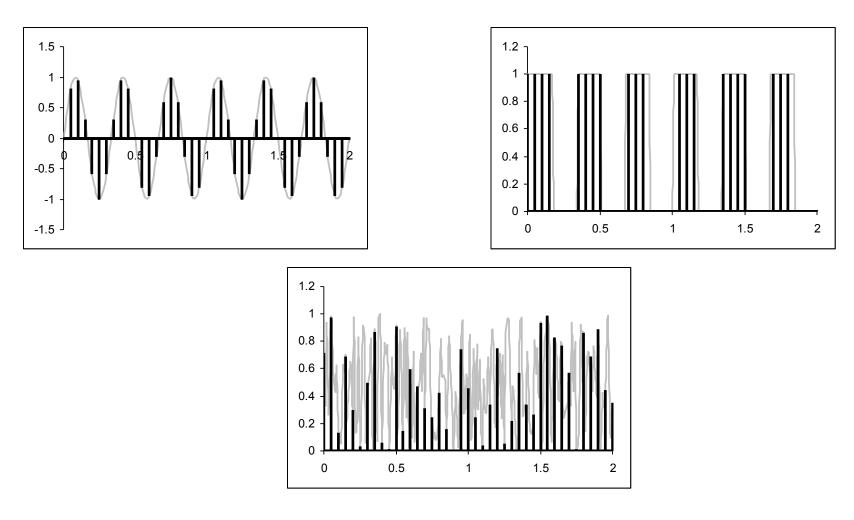
Continuous-Time Signal

 $x(t) = \sin(\omega t)$

Discrete-Time Signal $x(t \Rightarrow nT_s) \Rightarrow x(nT_s) = x[n] = \sin(\omega nT_s)$ where *n* is an integer: $N_1 < n < N_2$ and T_s is the sampling period

BME 333 Biomedical Signals and Systems - J.Schesser

Discrete-Time Signals



BME 333 Biomedical Signals and Systems - J.Schesser

Discrete Spatial Signal

This image consists of 200 x 158 pixels where each pixel can take on a value representing the color displayed in the form of [r,g,b].

Signals have Properties

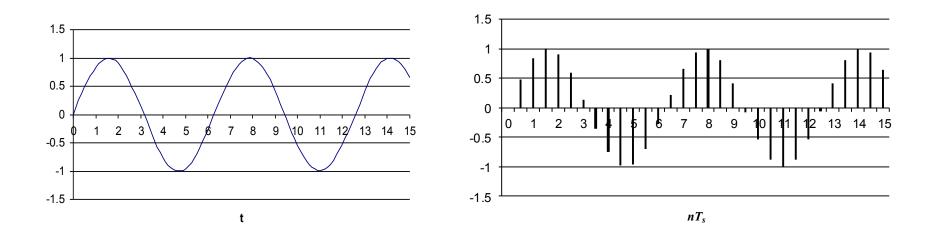
- Take on Real or Complex values
- Periodic or non-periodic
- Symmetries
- Bounded or Unbounded

Complex Signals

- Continuous Signals have to be solutions of differential equations they can be in the form: $x(t) = (A_1 + B_1 t + \cdots)e^{S_1 t} + (A_2 + B_2 t + \cdots)e^{S_2 t} + \cdots$
- Discrete Signals have to be solutions of difference equations they can be in the form:
 x[n]=(A₁+B₁n+···)z₁n+(A₂+B₂n+···)z₂n+····)z₂n+····
 where A_i, B_i, etc., s_i and z_i can be complex numbers with real and imaginary parts.

Periodic or non-periodic

• Periodic signals are those which satisfy x(t+T) = x(t) for all t and *T* is called the Period.



BME 333 Biomedical Signals and Systems - J.Schesser

Sinusoidal Continuous Signals

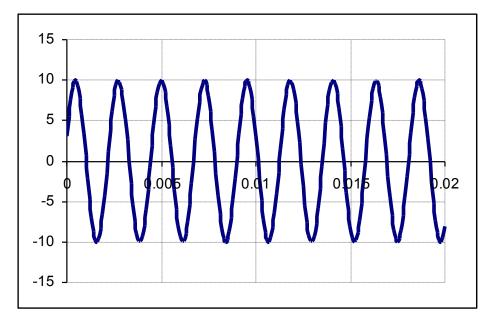
- Sinusoidal Signals are <u>periodic</u> functions which are based on the sine or cosine function from trigonometry.
- The general form of a Sinusoidal Signal

 $x(t) = A \cos(\omega_o t + \phi)$ Or $x(t) = A \cos(2\pi f_o t + \phi)$

- where $\cos(\cdot)$ represent the cosine function
 - We can also use $sin(\cdot)$, the sine function
- $\omega_o t + \phi$ or $2\pi f_o t + \phi$ is angle (in radians) of the cosine function
 - Since the angle depends on time, it makes x(t) a signal
- $-\omega_o$ is the radian frequency of the sinusoidal signal
 - f_o is called the cyclical frequency of the sinusoidal signal
- $-\phi$ is the phase shift or phase angle
- -A is the amplitude of the signal

Example

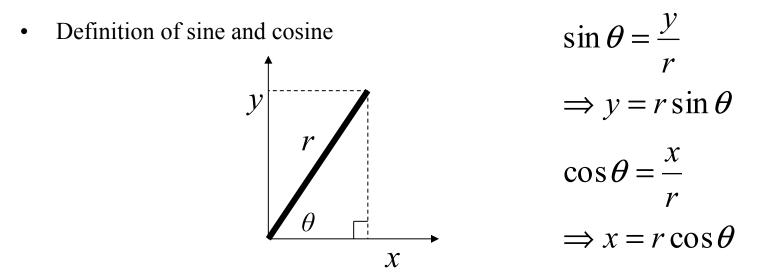
 $x(t) = 10 \cos(2\pi (440)t - 0.4\pi)$



One cycle takes 1/440 = .00227 seconds This is called the period, T, of the sinusoid and is equal to the inverse of the frequency, *f*

> BME 333 Biomedical Signals and Systems - J.Schesser

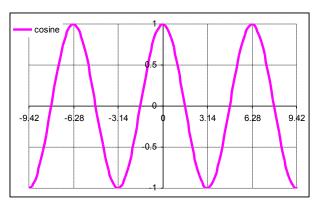
Sine and Cosine Functions

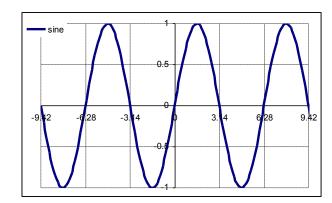


- Depending upon the quadrant of θ the sine and cosine function changes
 - As the θ increases from 0 to $\pi/2$, the cosine decreases from 1 to 0 and the sine increases from 0 to 1
 - As the θ increases beyond $\pi/2$ to π , the cosine decreases from 0 to -1 and the sine decreases from 1 to 0
 - As the θ increases beyond π to $3\pi/2$, the cosine increases from -1 to 0 and the sine decreases from 0 to -1
 - As the θ increases beyond $3\pi/2$ to 2π , the cosine increases from 0 to 1 and the sine increases from -1 to 0

BME 333 Biomedical Signals and Systems - J.Schesser

Properties of Sinusoids

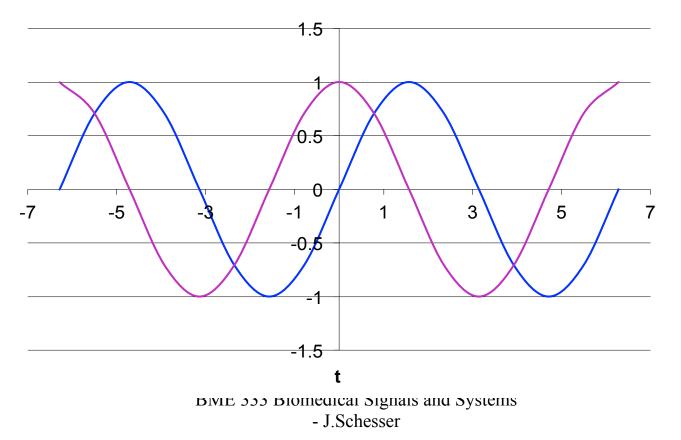




Property	Equation	
Equivalence	$\sin \theta = \cos (\theta - \pi/2)$ or $\cos \theta = \sin (\theta + \pi/2)$	
Periodicity	$\cos(\theta + 2\pi k) = \cos \theta$ or $\sin(\theta + 2\pi k) = \sin \theta$ where k is an integer	
Evenness of cosine	$\cos\theta = \cos\left(-\theta\right)$	
Oddness of sine	$\sin \theta = -\sin (-\theta)$	
Zeros of sine	$\sin \pi k = 0$, when k is an integer	
Zeros of cosine	$\cos [\pi (k+1)/2] = 0$, when k is an even integer; odd multiples of $\pi/2$	
Ones of the cosine	$\cos 2\pi k = 1$, when k is an integer; even multiples of π	
Ones of the sine	sin $[\pi(k+1/2)] = 1$, when k is an even integer; alternate odd multiples of $\pi/2$	
Negative ones of the cosine	$\cos [2\pi (k+1)/2] = -1$, when k is an integer; odd multiples of π	
Negative ones of the sine	sin $[\pi(k+1/2)]$ = -1, when k is an odd integer; alternate odd multiples of $3\pi/2$	

Signal Symmetries

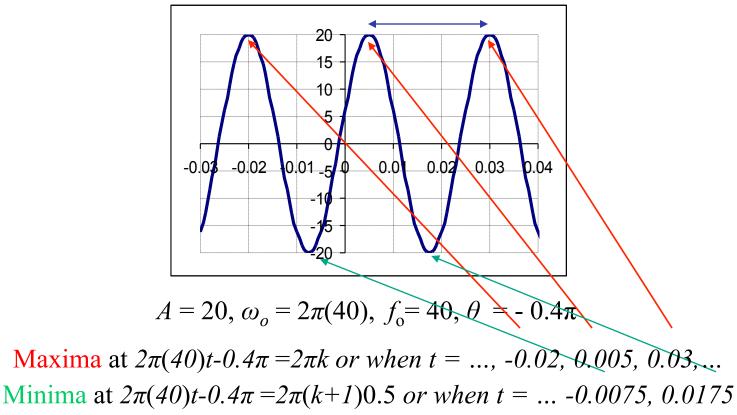
- Even Signals are defined as x_e(t)=x_e(-t)
 Odd Signals are defined as x_o(t)=-x_o(-t)



18

Sinusoidal Signals

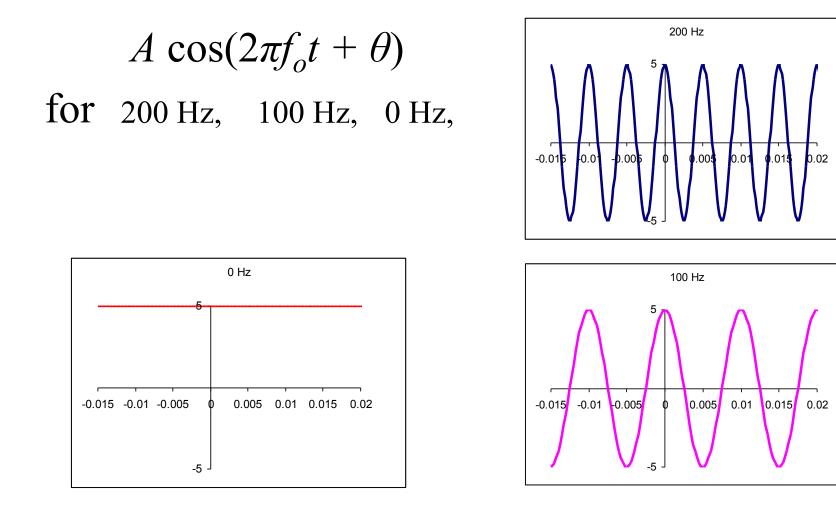
 $x(t) = 20 \cos(2\pi (40)t - 0.4\pi)$



Time Period $(1/f_o)$ between = 0.005- (-0.02) = 0.025 sec

BME 333 Biomedical Signals and Systems - J.Schesser

Frequencies



BME 333 Biomedical Signals and Systems - J.Schesser

Relation of Period to Frequency

• Period of a sinusoid, T_o , is the length of one cycle and

 $T_o = 1/f_o$

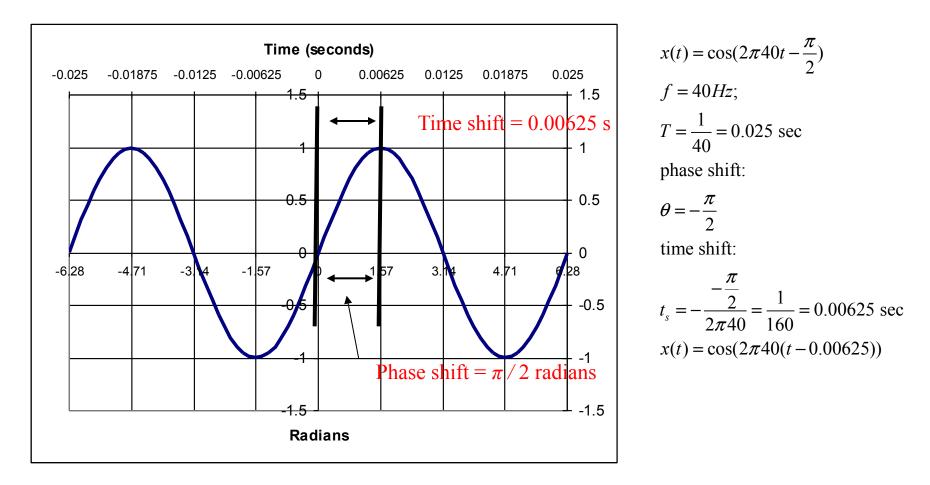
• The following relationship must be true for all Signals which are periodic (not just sinusoids)

 $x(t+T_o) = x(t)$

• So

$$A\cos(\omega_o(t+T_o) + \theta) = A\cos(\omega_o t + \omega_o T_o + \theta)$$
$$A\cos(\omega_o t + \omega_o T_o + \theta) = A\cos(2\pi f_o t + 2\pi f_o T_o + \theta)$$
$$A\cos(2\pi f_o t + 2\pi f_o T_o + \theta) = A\cos(2\pi f_o t + 2\pi + \theta)$$
$$A\cos(2\pi f_o t + 2\pi + \theta) = A\cos(2\pi f_o t + \theta) = A\cos(\omega_o t + \theta)$$

Phase shift and Time Shift



Phase Shift and Time Shift

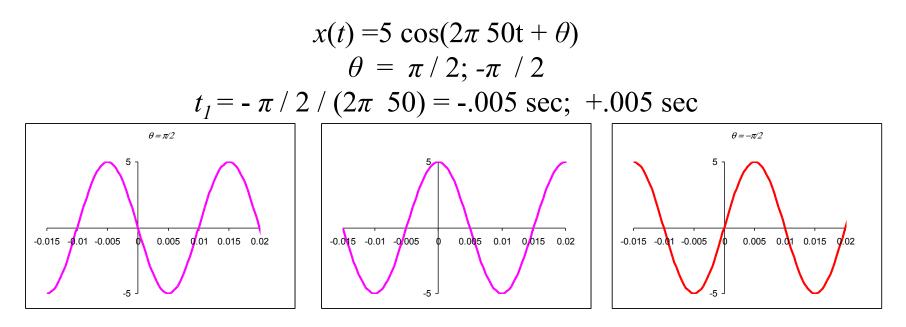
- The phase shift parameter θ (with frequency) determines the time locations of the maxima and minima of the sinusoid.
- When $\theta = 0$, then for positive peak at t = 0.
- When $\theta \neq 0$, then the phase shift determines how much the maximum is shifted from t = 0.
- However, delaying a signal by t_1 seconds, also shifts its waveform.

$$\begin{aligned} x(t-t_1) &= A \cos(\omega_o(t-t_1)) = A \cos(\omega_o t - \omega_o t_1) \\ \omega_o t - \omega_o t_1 &= \omega_o t + \theta \\ - \omega_o t_1 &= \theta \\ t_1 &= -\theta / \omega_o &= -\theta / 2\pi f_o \\ \theta &= -2\pi f_o t_1 &= -2\pi (t_1 / T_o) \end{aligned}$$

- Note that a positive (negative) value of t_1 equates to a delay (advance)
- And a a positive (negative) value of θ equates to an advance (delay)

Phase and Time Shift

- Note that a positive (negative) value of t_1 equates to a delay (advance)
- And a a positive (negative) value of θ equates to an advance (delay)



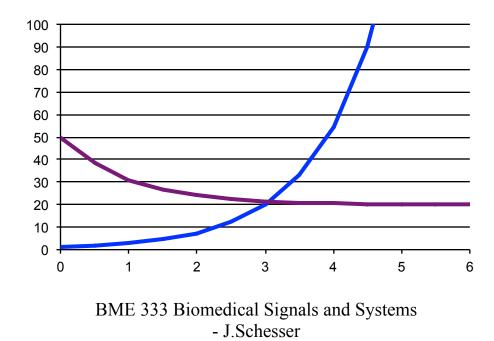
BME 333 Biomedical Signals and Systems - J.Schesser

Identities and Derivatives

Number	Equation
1	$\sin^2\theta + \cos^2\theta = 1$
2	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$
3	$\sin 2\theta = 2\sin\theta\cos\theta$
4	$\sin (a \pm b) = \sin a \cos b \pm \cos a \sin b$
5	$\cos(a \pm b) = \cos a \cos b$ $\sin a \sin b$
6	$\cos a \cos b = [\cos (a+b) + \cos (a-b)]/2$
7	$\sin a \sin b = [\cos (a - b) - \cos (a + b)]/2$
8	$\cos^2\theta = [1 + \cos 2\theta]/2$
9	$\sin^2\theta = [1 - \cos 2\theta]/2$
10	$d\sin\theta / d\theta = \cos\theta$
11	$d\cos\theta / d\theta = -\sin\theta$

Bounded or Unbounded

- For Bounded Signals $\int |f(t)| dt$ approaches a constant value as $t \to \pm \infty$
- Unbounded Signals approach infinity as $t \rightarrow \pm \infty$



Euler's Formula

Basic Formula

 $e^{j\theta} = \cos\theta + j\sin\theta$

(Note that: $e^{\theta} \neq \cos \theta + j \sin \theta$)

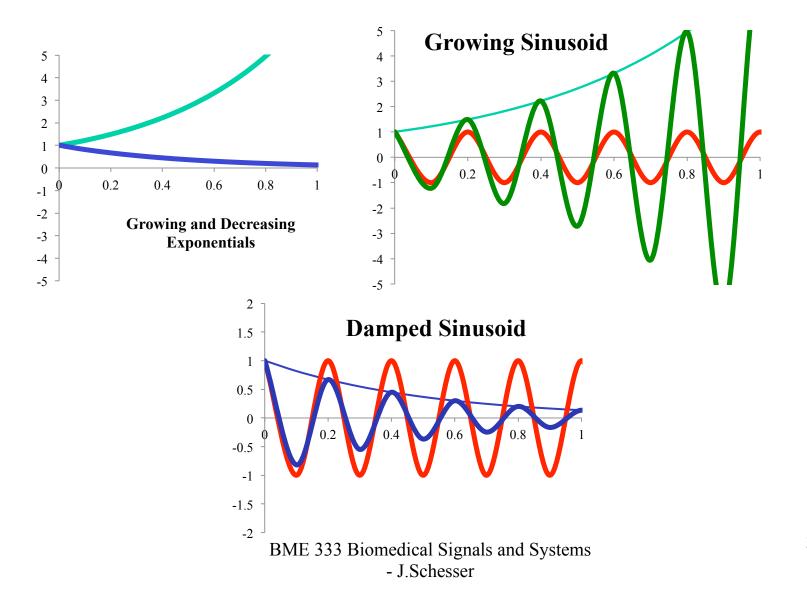
Also: $e^{j\omega t} = \cos \omega t + j \sin \omega t$ And $e^{j(\omega t + \phi)} = \cos(\omega t + \phi) + j \sin(\omega t + \phi)$ And one more where $s = \alpha + j\omega$ $e^{st} = e^{(\alpha + j\omega)t} = e^{\alpha t} \cos(\omega t + \phi) + je^{\alpha t} \sin(\omega t + \phi)$

More on Complex Signals

- Let's assume that $x(t) = Ae^{st}$ for all t, A is a real constant and s is complex and is given as $s = \alpha + j\omega$
- If $s = \alpha$ is real then x(t) is a real exponential function $x(t)=Ae^{\alpha t}$
- If $s = j \omega$ is imaginary and using Euler's formula then x(t) is a sinusoidal function $x(t)=Ae^{j\omega t} = A(cos \omega t+j \sin \omega t)$ [Book uses, $F: \omega=2\pi F$]
- If *s* is complex then x(t) is called a damped sinusoidal function for s < 0 and is of the form

$$x(t) = Ae^{st} = Ae^{\alpha t} (\cos \omega t + j \sin \omega t)$$

More on Complex Signals



Homework

- 1. Continuous and Discrete Signals Use Matlab to plot the signals; submit your code
 - 1. $f(t) = 1 e^{-t}$ is a continuous signal. Draw its waveform.
 - 2. Draw the discrete version of f(t) for T=0.25.
- 2. Periodic Signals
 - 1. Show that *tan t* is periodic. What is its period?
 - 2. Is e^{-t} periodic? Why not?
 - 3. Is $e^{-t} sin(t)$ periodic? Describe?
- 3. Bounded Signals
 - 1. Prove that $f(t) = e^{-t}$ is bounded for t > 0.
 - 2. What about $f(t) = e^{-t}$ for all t.
- 4. Biosignals
 - 1. For a typical EEG, EKG, and EMG signal, is the signal periodic? If so, what is it's period.
 - 2. For a typical EEG, EKG, and EMG signal, is the signal bounded? If so, describe why.

Homework cont'd

- 5. Symmetry
 - 1. Is *cos t* even or odd? *sin t*? *tan t*?
 - 2. What about *cos t x sin t*? *tan t x cos t*?
 - 3. What is the symmetry of the product of:
 - 1. Two even functions
 - 2. Two odd Functions
 - 3. Even and Odd function
- 6. CT.1.2.1,CT.1.2,3

7. DT.1.2.1,DT.1.2.3