Some Review of Signals and Systems

Lecture \#1
 $1.1-1.3$

What Is this Course All About?

- To Gain an Appreciation of the Various Types of Signals and Systems
- To Analyze The Various Types of Systems
- To Learn the Skills and Tools needed to Perform These Analyses.

What are Signals?

- A Signal is a term used to denote the information carrying property being transmitted to or from an entity such as a device, instrument, or physiological source
- Examples:
- Radio and Television Signals
- Telecommunications and Computer Signals
- Biomedical Engineering Signals

What is a System?

- A System is a term used to denote an entity that processes a Signal
- A System has inputs and outputs
- Examples
- Amplifiers, Radios, Televisions
- Telephone, Modem, Computer
- Oscilloscopes, EKG, EEG, EMG

How do we describe Signals?

- Signals are associated with an independent variable(s): e.g., time, single or multivariate spatial coordinate
- Most instrumentation signals have time as their independent variable
- A digital photograph or image has spatial coordinates as its independent variables
- Signal Independent Variables can be either Continuous or Discrete

Continuous-Time Signals

BME 333 Biomedical Signals and Systems

- J.Schesser

Discrete-Time Signals

A Discrete-Time Signal can be obtained from a Continuous-Time signal by Sampling.

Continuous-Time Signal $x(t)=\sin (\omega t)$

Discrete-Time Signal $x\left(t \Rightarrow n T_{s}\right) \Rightarrow x\left(n T_{s}\right)=x[n]=\sin \left(\omega n T_{s}\right)$ where n is an integer: $N_{1}<n<N_{2}$ and T_{s} is the sampling period

Discrete-Time Signals

BME 333 Biomedical Signals and Systems

- J.Schesser

Discrete Spatial Signal

This image consists of 200×158 pixels where each pixel can take on a value representing the color displayed in the form of $[\mathrm{r}, \mathrm{g}, \mathrm{b}]$.

BME 333 Biomedical Signals and Systems

Signals have Properties

- Take on Real or Complex values
- Periodic or non-periodic
- Symmetries
- Bounded or Unbounded

Complex Signals

- Continuous Signals have to be solutions of differential equations they can be in the form:

$$
x(t)=\left(A_{1}+B_{1} t+\cdots\right) e^{s t} t_{+}\left(A_{2}+B_{2} t+\cdots\right) e^{s_{2} t}+\cdots
$$

- Discrete Signals have to be solutions of difference equations they can be in the form:
$x[n]=\left(A_{1}+B_{1} n+\cdots\right) z_{1} n_{+}\left(A_{2}+B_{2} n+\cdots\right) z_{2} n_{+\cdots}$
where A_{i}, B_{i}, etc., s_{i} and z_{i} can be complex numbers with real and imaginary parts.

Periodic or non-periodic

- Periodic signals are those which satisfy

$$
\begin{aligned}
& \quad x(t+T)=x(t) \text { for all } \mathrm{t} \\
& \text { and } T \text { is called the Period. }
\end{aligned}
$$

BME 333 Biomedical Signals and Systems

Sinusoidal Continuous Signals

- Sinusoidal Signals are periodic functions which are based on the sine or cosine function from trigonometry.
- The general form of a Sinusoidal Signal

$$
\begin{gathered}
x(t)=A \cos \left(\omega_{o} t+\phi\right) \\
\text { Or } \\
x(t)=A \cos \left(2 \pi f_{0} t+\phi\right)
\end{gathered}
$$

- where $\cos (\cdot)$ represent the cosine function
- We can also use $\sin (\cdot)$, the sine function
- $\omega_{o} t+\phi$ or $2 \pi f_{o} t+\phi$ is angle (in radians) of the cosine function
- Since the angle depends on time, it makes $x(t)$ a signal
- ω_{o} is the radian frequency of the sinusoidal signal
- f_{o} is called the cyclical frequency of the sinusoidal signal
- ϕ is the phase shift or phase angle
- A is the amplitude of the signal

$$
\begin{gathered}
\text { Example } \\
x(t)=10 \cos (2 \pi(440) t-0.4 \pi)
\end{gathered}
$$

One cycle takes $1 / 440=.00227$ seconds This is called the period, T, of the sinusoid and is equal to the inverse of the frequency, f

Sine and Cosine Functions

- Definition of sine and cosine

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} \\
& \Rightarrow y=r \sin \theta \\
& \cos \theta=\frac{x}{r} \\
& \Rightarrow x=r \cos \theta
\end{aligned}
$$

- Depending upon the quadrant of θ the sine and cosine function changes
- As the θ increases from 0 to $\pi / 2$, the cosine decreases from 1 to 0 and the sine increases from 0 to 1
- As the θ increases beyond $\pi / 2$ to π, the cosine decreases from 0 to -1 and the sine decreases from 1 to 0
- As the θ increases beyond π to $3 \pi / 2$, the cosine increases from -1 to 0 and the sine decreases from 0 to -1
- As the θ increases beyond $3 \pi / 2$ to 2π, the cosine increases from 0 to 1 and the sine increases from -1 to 0

Properties of Sinusoids

Property	Equation
Equivalence	$\sin \theta=\cos (\theta-\pi / 2)$ or $\cos \theta=\sin (\theta+\pi / 2)$
Periodicity	$\cos (\theta+2 \pi k)=\cos \theta$ or $\sin (\theta+2 \pi k)=\sin \theta$ where k is an integer
Evenness of cosine	$\cos \theta=\cos (-\theta)$
Oddness of sine	$\sin \theta=-\sin (-\theta)$
Zeros of sine	$\sin \pi k=0$, when k is an integer
Zeros of cosine	$\cos [\pi(k+1) / 2]=0$, when k is an even integer; odd multiples of $\pi / 2$
Ones of the cosine	$\cos 2 \pi k=1$, when k is an integer; even multiples of π
Ones of the sine	$\sin [\pi(k+1 / 2)]=1$, when k is an even integer; alternate odd multiples of $\pi / 2$
Negative ones of the cosine	$\cos [2 \pi(k+1) / 2]=-1$, when k is an integer; odd multiples of π
Negative ones of the sine	$\sin [\pi(k+1 / 2)]=-1$, when k is an odd integer; alternate odd multiples of $3 \pi / 2$

BME 333 Biomedical Signals and Systems

- J.Schesser

Signal Symmetries

- Even Signals are defined as $x_{e}(t)=x_{e}(-t)$
- Odd Signals are defined as $x_{o}(t)=-x_{o}(-t)$

bivie siomealcal signais and systems
- J.Schesser

Sinusoidal Signals

$$
x(t)=20 \cos (2 \pi(40) t-0.4 \pi)
$$

Maxima at $2 \pi(40) t-0.4 \pi=2 \pi k$ or when $t=\ldots,-0.02,0.005,0.03, \ldots$
Minima at $2 \pi(40) t-0.4 \pi=2 \pi(k+1) 0.5$ or when $t=\ldots-0.0075,0.0175$
Time Period $\left(1 / f_{o}\right)$ between $=0.005-(-0.02)=0.025 \mathrm{sec}$

Frequencies

$$
A \cos \left(2 \pi f_{o} t+\theta\right)
$$

for $200 \mathrm{~Hz}, \quad 100 \mathrm{~Hz}, \quad 0 \mathrm{~Hz}$,

BME 333 Biomedical Signals and Systems

- J.Schesser

Relation of Period to Frequency

- Period of a sinusoid, T_{o}, is the length of one cycle and

$$
T_{o}=1 / f_{o}
$$

- The following relationship must be true for all Signals which are periodic (not just sinusoids)

$$
x\left(t+T_{o}\right)=x(t)
$$

- So

$$
\begin{gathered}
A \cos \left(\omega_{o}\left(t+T_{o}\right)+\theta\right)=A \cos \left(\omega_{o} t+\omega_{o} T_{o}+\theta\right) \\
A \cos \left(\omega_{o} t+\omega_{o} T_{o}+\theta\right)=A \cos \left(2 \pi f_{o} t+2 \pi f_{o} T_{o}+\theta\right) \\
A \cos \left(2 \pi f_{o} t+2 \pi f_{o} T_{o}+\theta\right)=A \cos \left(2 \pi f_{o} t+2 \pi+\theta\right) \\
A \cos \left(2 \pi f_{o} t+2 \pi+\theta\right)=A \cos \left(2 \pi f_{o} t+\theta\right)=A \cos \left(\omega_{o} t+\theta\right)
\end{gathered}
$$

Phase shift and Time Shift

$$
\begin{aligned}
& x(t)=\cos \left(2 \pi 40 t-\frac{\pi}{2}\right) \\
& f=40 \mathrm{~Hz} \\
& T=\frac{1}{40}=0.025 \mathrm{sec} \\
& \text { phase shift: } \\
& \theta=-\frac{\pi}{2}
\end{aligned}
$$

time shift:

$$
\begin{aligned}
& t_{s}=-\frac{-\frac{\pi}{2}}{2 \pi 40}=\frac{1}{160}=0.00625 \mathrm{sec} \\
& x(t)=\cos (2 \pi 40(t-0.00625))
\end{aligned}
$$

Phase Shift and Time Shift

- The phase shift parameter θ (with frequency) determines the time locations of the maxima and minima of the sinusoid.
- When $\theta=0$, then for positive peak at $t=0$.
- When $\theta \neq 0$, then the phase shift determines how much the maximum is shifted from $t=0$.
- However, delaying a signal by t_{l} seconds, also shifts its waveform.

$$
\begin{gathered}
x\left(t-t_{l}\right)=A \cos \left(\omega_{o}\left(t-t_{l}\right)\right)=A \cos \left(\omega_{o} t-\omega_{o} t_{l}\right) \\
\omega_{o} t-\omega_{o} t_{l}=\omega_{o} t+\theta \\
-\omega_{o} t_{1}=\theta \\
t_{l}=-\theta / \omega_{o}=-\theta / 2 \pi f_{o} \\
\theta=-2 \pi f_{o} t_{l}=-2 \pi\left(t_{l} / T_{o}\right)
\end{gathered}
$$

- Note that a positive (negative) value of t_{l} equates to a delay (advance)
- And a a positive (negative) value of θ equates to an advance (delay)

Phase and Time Shift

- Note that a positive (negative) value of t_{l} equates to a delay (advance)
- And a a positive (negative) value of θ equates to an advance (delay)

$$
\begin{gathered}
x(t)=5 \cos (2 \pi 50 \mathrm{t}+\theta) \\
\theta=\pi / 2 ;-\pi / 2
\end{gathered}
$$

Identities and Derivatives

Number	\quad Equation
1	$\sin ^{2} \theta+\cos ^{2} \theta=1$
2	$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
3	$\sin 2 \theta=2 \sin \theta \cos \theta$
4	$\sin (a \pm b)=\sin a \cos b \pm \cos a \sin b$
5	$\cos (a \pm b)=\cos a \cos b \quad \sin a \sin b$
6	$\cos a \cos b=[\cos (a+b)+\cos (a-b)] / 2$
7	$\operatorname{sos} a \sin b=[\cos (a-b)-\cos (a+b)] / 2$
8	$\sin ^{2} \theta=[1-\cos 2 \theta] / 2$
9	$d \sin ^{2} \theta / d \theta=\cos \theta$
10	$d \cos \theta / d \theta=-\sin \theta$
11	

Bounded or Unbounded

- For Bounded Signals $\int|f(t)| d t$ approaches a constant value as $t \rightarrow \pm \infty$
- Unbounded Signals approach infinity as $t \rightarrow \pm \infty$

BME 333 Biomedical Signals and Systems

- J.Schesser

Euler's Formula

Basic Formula
$e^{j \theta}=\cos \theta+j \sin \theta$
(Note that: $e^{\theta} \neq \cos \theta+j \sin \theta$)

Also:
$e^{j \omega t}=\cos \omega t+j \sin \omega t$
And
$e^{j(\omega t+\phi)}=\cos (\omega t+\phi)+j \sin (\omega t+\phi)$
And one more where $s=\alpha+j \omega$
$e^{s t}=e^{(\alpha+j \omega) t}=e^{\alpha t} \cos (\omega t+\phi)+j e^{\alpha t} \sin (\omega t+\phi)$

More on Complex Signals

- Let's assume that $x(t)=A e^{s t}$ for all t, A is a real constant and s is complex and is given as $s=\alpha+j \omega$
- If $s=\alpha$ is real then $x(t)$ is a real exponential function $x(t)=A e^{a t}$
- If $s=j \omega$ is imaginary and using Euler's formula then $x(t)$ is a sinusoidal function $x(t)=A e^{j \omega t}=A(\cos$ $\omega t+j \sin \omega t$) [Book uses, $F: \omega=2 \pi F]$
- If s is complex then $x(t)$ is called a damped sinusoidal function for $s<0$ and is of the form

$$
x(t)=A e^{s t}=A e^{\alpha t}(\cos \omega t+j \sin \omega t)
$$

More on Complex Signals

- J.Schesser

Homework

1. Continuous and Discrete Signals Use Matlab to plot the signals; submit your code
2. $f(t)=1-e^{-t}$ is a continuous signal. Draw its waveform.
3. Draw the discrete version of $f(t)$ for $T=0.25$.
4. Periodic Signals
5. Show that $\tan t$ is periodic. What is its period?
6. Is e^{-t} periodic? Why not?
7. Is $e^{-t} \sin (t)$ periodic? Describe?
8. Bounded Signals
9. Prove that $f(t)=e^{-t}$ is bounded for $t>0$.
10. What about $f(t)=e^{-t}$ for all t.
11. Biosignals
12. For a typical EEG, EKG, and EMG signal, is the signal periodic? If so, what is it's period.
13. For a typical EEG, EKG, and EMG signal, is the signal bounded? If so, describe why.

Homework cont'd

5. Symmetry
6. Is $\cos t$ even or odd? $\sin t$? tan t ?
7. What about $\cos t x \sin t ? \tan t x \cos t$?
8. What is the symmetry of the product of:
9. Two even functions
10. Two odd Functions
11. Even and Odd function
12. CT.1.2.1,CT.1.2,3
13. DT.1.2.1,DT.1.2.3
