More on FT

Lecture 10 4CT. 5
 3CT.3-5,7,8

Higher Order Differentiation

$$
\begin{gathered}
\mathfrak{J}\left[\frac{d^{n} f(t)}{d t^{n}}\right]=(j \omega)^{n} F(j \omega) \\
\sum_{n=0}^{N} a_{n} \frac{d^{n} y(t)}{d t^{n}}=\sum_{m=0}^{M} b_{m} \frac{d^{m} x(t)}{d t^{m}}, \Rightarrow \mathfrak{I}\left\{\sum_{n=0}^{N} a_{n} \frac{d^{n} y(t)}{d t^{n}}\right\}=\mathfrak{J}\left\{\sum_{m=0}^{M} b_{m} \frac{d^{m} x(t)}{d t^{m}}\right\} \\
\sum_{n=0}^{N} a_{n}(j \omega)^{n} Y(j \omega)=\sum_{m=0}^{M} b_{m}(j \omega)^{m} X(j \omega) \\
\mathbf{Y}(j \omega)=\frac{\sum_{m=0}^{M} b_{m}(j \omega)^{m}}{\sum_{n=0}^{N} a_{n}(j \omega)^{n}} \mathbf{X}(j \omega)
\end{gathered}
$$

$$
\begin{aligned}
& \left(a_{n} p^{n}+a_{n-1} p^{n-1}+\cdots+a_{1} p^{1}+a_{0}\right) y(t)=\left(b_{m} p^{m}+\cdots+a_{0}\right) x(t) \\
& y(t)=\frac{B(p)}{A(p)} x(t) \\
& \mathbf{Y}(j \omega)=\frac{\mathbf{B}(j \omega)}{\mathbf{A}(j \omega)} \mathbf{X}(j \omega)=\mathbf{H}(j \omega) \mathbf{X}(j \omega)
\end{aligned}
$$

Frequency Response

- We just have seen that the FT of the differential equation describing a system yields the Frequency Response, $\mathbf{H}(j \omega)$
- We have also seen that convolving the impulse response, $h(t)$, with any input, $x(t)$ will yield its output, $y(t)$.
- Is the Frequency Response related to the impulse response?

Frequency Response and the Impulse Response

Using convolution, for only sinusoidal inputs:
$x(t)=A e^{j(\omega t+\phi)}$
$y(t)=\int h(\tau) x(t-\tau) d \tau=\int h(\tau) A e^{j[\omega(t-\tau)+\phi]} d \tau$
$=\int h(\tau) A e^{j(\omega t+\phi)} e^{-j \omega \tau} d \tau=A e^{j(\omega t+\phi)} \int h(\tau) e^{-j \omega \tau} d \tau=x(t) \int h(\tau) e^{-j \omega \tau} d \tau$
$y(t)=x(t) \int h(\tau) e^{-j \omega \tau} d \tau$
Taking the FT of both sides and noting that $\int h(\tau) e^{-j \omega \tau} d \tau$ is not a function of t :
$\int y(t) e^{-j \omega t} d t=\int x(t) e^{-j \omega t} d t \int h(\tau) e^{-j \omega \tau} d \tau$
$Y(j \omega)=X(j \omega) \int h(\tau) e^{-j \omega \tau} d \tau \Rightarrow H(j \omega)=\frac{Y(j \omega)}{X(j \omega)}=\int h(\tau) e^{-j \omega \tau} d \tau$
But $\int h(\tau) e^{-j \omega \tau} d \tau$ is the FT of $h(t)$ and, therefore,
the frequency response is just the FT of the impulse response.
We say that $H(j \omega)$ and $h(t)$ are FT pairs.

Another Interesting Example

$$
\begin{aligned}
& f(t)=V \text { for }-\tau / 2<t<\tau / 2 ; \\
& =V[u(t+\tau / 2)-u(t-\tau / 2)] \\
& F(j \omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \\
& =\int_{-\tau / 2}^{\tau / 2} V e^{-j \omega t} d t=\left.\frac{V}{-j \omega} e^{-j \omega t}\right|_{-\tau / 2} ^{\tau / 2}=\frac{V}{-j \omega}\left(e^{-j \omega \tau / 2}-e^{j \omega \tau / 2}\right) \\
& =\frac{V}{j \omega}\left(e^{j \omega \tau / 2}-e^{-j \omega \tau / 2}\right)=2 \frac{V}{\omega}\left(\frac{e^{j \omega \tau / 2}-e^{-j \omega \tau / 2}}{2 j}\right)=2 \frac{V}{\omega} \sin (\omega \tau / 2) \\
& =V \tau \frac{\sin (\omega \tau / 2)}{\omega \tau / 2}=V \tau \operatorname{Sa}(\omega \tau / 2)
\end{aligned}
$$

- FT of rectangular pulse is the Sampling Function
- What is the FT of $u(t)$?

FT of the Unit Impulse

$$
\begin{aligned}
& \mathfrak{J}[\delta(t)]=\int_{-\infty}^{\infty} \delta(t) e^{-j \omega t} d t \\
& \text { From } f(x)=\int_{-\infty}^{\infty} f(t) \delta(t-x) d t \\
& \Im[\delta(t)]=e^{-j \omega 0}=1
\end{aligned}
$$

- If $x(t)=\delta(t)$, then $y(t)=h(t)$ the response due to a unit impulse response and $H(j \omega)$ is the network response or system function in phasor form

$$
Y(j \omega)=\frac{B(j \omega)}{A(j \omega)} X(j \omega) ; \quad X(j \omega)=1 ; \quad \therefore \frac{B(j \omega)}{A(j \omega)}=H(j \omega)
$$

This implies that the FT of the impulse response is the network response or frequency response

$$
H(j \omega)=\Im[h(t)]=\int_{-\infty}^{\infty} h(t) e^{-j \omega t} d t
$$

FT of $\delta(t)$ continued

We just saw that $\mathfrak{J}[\delta(t)]=e^{-j \omega 0}=1$ therefore, the inverse Fourier transform of 1 must be the delta function.
$\mathfrak{J}^{-1}[1]=\delta(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} 1 e^{j \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty}(\cos \omega t+j \sin \omega t) d \omega$ Using the definition of the inverse FT.
$=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \cos \omega t d \omega+\frac{1}{2 \pi} \int_{-\infty}^{\infty} j \sin \omega t d \omega$
$=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \cos \omega t d \omega=\frac{1}{\pi} \int_{0}^{\infty} \cos \omega t d \omega$; using the properties of even and odd functions.
$\delta(t)=\frac{1}{\pi} \int_{0}^{\infty} \cos \omega t d \omega$

Odd and Even Properties of a Signal

Note that the sine is odd and $\lim _{a \rightarrow \infty} \int_{-a}^{a} \sin \omega t d \omega=\lim _{a \rightarrow \infty}\left\{\int_{0}^{a} \sin \omega t d \omega+\int_{-a}^{0} \sin \omega t d \omega\right\}$
If $\int_{0}^{a} \sin \omega t d \omega=g(a)$; then $\int_{-a}^{0} \sin \omega t d \omega=-g(a)$ since
Let $\omega=-x, \Rightarrow \int_{a}^{0} \sin (-x t)(-d x)=\int_{a}^{0}-\sin (x t)(-d x)=\int_{a}^{0} \sin (x t) d x=-\int_{0}^{a} \sin (x t) d x=-g(a)$
$\lim _{a \rightarrow \infty}\{g(a)-g(a)\}=0$
Note that the cosine is even and $\lim _{a \rightarrow \infty} \int_{-a}^{a} \cos \omega t d \omega=\lim _{a \rightarrow \infty}\left\{\int_{0}^{a} \cos \omega t d \omega+\int_{-a}^{0} \cos \omega t d \omega\right\}$
If $\int_{0}^{a} \cos \omega t d \omega=g(a)$; then $\int_{-a}^{0} \cos \omega t d \omega=g(a)$ since
Let $\omega=-x, \Rightarrow \int_{a}^{0} \cos (-x t)(-d x)=\int_{a}^{0} \cos (x t)(-d x)=-\int_{a}^{0} \cos (x t) d x=\int_{0}^{a} \cos (x t) d x=g(a)$
$\lim _{a \rightarrow \infty}\{g(a)+g(a)\}=\lim _{a \rightarrow \infty}\{2 g(a)\}=\lim _{a \rightarrow \infty} 2 \int_{0}^{a} \cos \omega t d \omega$

Calculation of the Frequency Response

Given that $V_{1}(t)=\delta(t)$ and it is known that $V_{2}(t)=t e^{-t} u(t)$ what is FT of [te $\left.e^{-t} u(t)\right]$ which must equal be $H(j \omega)$?

We can calculate FT of $\left[t e^{-t} u(t)\right]$ by evaluating the integral of $t e^{-t} u(t) e^{-j \omega t}$ or calculate the system response function:

$V_{2}(j \omega)$

$$
\begin{aligned}
& V_{2}(j \omega)=\frac{1 / j \omega}{2+j \omega+1 / j \omega} V_{1}(j \omega) \\
& H(j \omega)=\frac{1 / j \omega}{2+j \omega+1 / j \omega}=\frac{1}{2 j \omega-\omega^{2}+1} \\
& =\frac{1}{(1+j \omega)^{2}}=\Im\left[t e^{-t} u(t)\right]
\end{aligned}
$$

Fourier Transform of A Constant

$\mathfrak{I}[1]=\int_{-\infty}^{\infty} e^{-j \omega t} d t=\int_{-\infty}^{\infty}(\cos \omega t-j \sin \omega t) d t$
Since a constant is an even function over ∞ :
$=\int_{-\infty}^{\infty} \cos \omega t d t$
But we said that $\delta(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \cos \omega t d \omega$
$\therefore \Im[1]=2 \pi \delta(\omega)$

- Our first Duality:
- A constant in the time domain is a unit impulse function in the frequency domain
- A unit impulse function in the time domain is a constant in the frequency domain

FT of a Unit Step Function

$$
\begin{gathered}
\Im[u(t)]=\int_{-\infty}^{\infty} u(t) e^{-j \omega t} d t=\int_{0}^{\infty} e^{-j \omega t} d t=\left.\frac{e^{-j \omega t}}{-j \omega}\right|_{0} ^{\infty} \\
=\frac{1}{j \omega}\left(1-e^{-j \omega \infty}\right), \text { which is undefined } \\
\text { Let's use another technique : }
\end{gathered}
$$

$$
\begin{gathered}
\Im\left[\frac{d f(t)}{d t}\right]=j \omega F(j \omega) \\
\Im[\delta(t)]=1=\Im\left[\frac{d u(t)}{d t}\right]=j \omega \Im[u(t)] \\
\therefore \Im[u(t)]=\frac{1}{j \omega}, \text { for } \omega \neq 0
\end{gathered}
$$

Time \& Frequency Displacement

$$
\begin{aligned}
& \text { Time Displacement } \\
& \text { If } \mathfrak{J}[f(t)]=F(j \omega) \text {, then what is } \mathfrak{J}\left[f\left(t-T_{d}\right)\right] \\
& =\int_{-\infty}^{\infty} f\left(t-T_{d}\right) e^{-j \omega t} d t \text {, let } x=t-T_{d} \\
& =\int_{-\infty}^{\infty} f(x) e^{-j \omega\left(x+T_{d}\right)} d x=e^{-j \omega T_{d}} \int_{-\infty}^{\infty} f(x) e^{-j \omega x} d x \\
& =F(j \omega) e^{-j \omega T_{d}}
\end{aligned}
$$

$$
\begin{aligned}
V_{1}(j \omega) & =V \tau S a(\omega \tau / 2) \\
& =V \tau \frac{\sin (\omega \tau / 2)}{\omega \tau / 2}
\end{aligned}
$$

$$
\begin{aligned}
V_{2}(j \omega) & =V_{1}(j \omega) e^{-j \omega \tau / 2} \\
& =V \tau S a(\omega \tau / 2) e^{-j \omega \tau / 2} \\
& =V \tau \frac{\sin (\omega \tau / 2)}{\omega \tau / 2} e^{-j \omega \tau / 2} \\
& =V \frac{\left(1-e^{-j \omega \tau}\right)}{j \omega}
\end{aligned}
$$

Time \& Frequency Displacement

Frequency Displacement If $\Im[f(t)]=F(j \omega)$, then what is $F(\alpha+j \omega)$

Assume there exist a duality between Time and Frequency displacement and try

$$
\begin{aligned}
& \Im\left[f(t) e^{-\alpha t}\right]=\int_{-\infty}^{\infty} f(t) e^{-\alpha t} e^{-j \omega t} d t \\
& =\int_{-\infty}^{\infty} f(t) e^{-(\alpha+j \omega) t} d t=F(\alpha+j \omega)
\end{aligned}
$$

- Our next Duality:
- A shift in the time domain equals a multiplication by $e^{-j \omega T}$ the frequency domain
- A shift in the frequency domain equals a multiplication by $e^{-\alpha t}$ the time domain

FT Symmetries

Note: $F(j \omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t$
And: $F(-j \omega)=\int_{-\infty}^{\infty} f(t) e^{j \omega t} d t$

> Proof:

And: $F^{*}(j \omega)=\int_{-\infty}^{\infty} f(t) e^{j \omega t} d t$

$$
\begin{aligned}
& F(j \omega)=A(\omega)+j B(\omega) \\
& F^{*}(j \omega)=A(\omega)-j B(\omega) \\
& F(-j \omega)=A(-\omega)+j B(-\omega)
\end{aligned}
$$

$$
\text { Since } F^{*}(j \omega)=F(-j \omega) \text { then }
$$

$$
A(\omega)-j B(\omega)=A(-\omega)+j B(-\omega)
$$

Which means: $F^{*}(j \omega)=F(-j \omega)$

$$
\text { and } A(\omega)=A(-\omega) \&-B(\omega)=B(-\omega)
$$

$\therefore \operatorname{Re}[F(j \omega)]$ is even, $\operatorname{Im}[F(j \omega)]$ is odd

Some Interesting FTs

Exponential Functions

$$
\begin{aligned}
& \mathfrak{J}\left[e^{-\alpha t} u(t)\right]=\frac{1}{\alpha+j \omega}, \text { since } \mathfrak{J}[u(t)]=\frac{1}{j \omega} \\
& \mathfrak{J}\left[e^{-\alpha t} t u(t)\right]=\frac{1}{(\alpha+j \omega)^{2}}, \text { since } \mathfrak{J}[t u(t)]=\frac{1}{(j \omega)^{2}}, \\
& \text { since } \mathfrak{J}\left[\frac{d t u(t)}{d t}\right]=j \omega \mathfrak{J}[t u(t)]=\mathfrak{J}[u(t)]=\frac{1}{j \omega}
\end{aligned}
$$

More Interesting FTs

$$
\begin{aligned}
f(t) & =m(t) \cos \omega_{0} t \text { This a called amplitude modulation } \\
& =\frac{m(t)}{2} e^{j \omega_{0} t}+\frac{m(t)}{2} e^{-j \omega_{0} t} \\
\mathfrak{J}[f(t)] & =\frac{1}{2} M\left[j\left(\omega-\omega_{0}\right)\right]+\frac{1}{2} M\left[j\left(\omega+\omega_{0}\right)\right]
\end{aligned}
$$

This says that we have made two copies of the spectrum of $m(t)$ one shifted to the right of the $\omega=0$ axis and one to the left. Both of these copies are reduced by $1 / 2$.

Let's look at the case where $m(t)$ is a pulse and has the spectrum shown above.

Frequency Shifting Example

$V=\tau=1, \omega_{o}=30$

BME 333 Biomedical Signals and Systems

Fourier Transform and Fourier Series

	FT	FS
Time	Aperiodic	Periodic
Frequency	Continuous	Discrete

Now what about FT of a periodic function

Recall:

$$
\begin{aligned}
\Im[\delta(t)] & =1 \\
\Im[1] & =2 \pi \delta(\omega) \\
\Im\left[e^{j \omega_{o} t}\right] & =\mathfrak{J}\left[1 e^{j \omega_{o} t}\right]=2 \pi \delta\left(\omega-\omega_{o}\right)(\text { Frequency Shift }) \\
\mathfrak{J}\left[\cos \omega_{o} t\right] & =\mathfrak{J}\left[\frac{1}{2}\left(e^{j \omega_{o} t}+e^{-j \omega_{o} t}\right)\right]=\pi\left[\delta\left(\omega-\omega_{o}\right)+\delta\left(\omega+\omega_{o}\right)\right] \\
\mathfrak{J}\left[\sin \omega_{o} t\right] & =\mathfrak{J}\left[\frac{1}{2 j}\left(e^{j \omega_{o} t}-e^{-j \omega_{o} t}\right)\right]=-j \pi\left[\delta\left(\omega-\omega_{o}\right)-\delta\left(\omega+\omega_{o}\right)\right]
\end{aligned}
$$

FT of a Periodic Function

FT of a Periodic Function $f(t)$
A periodic function can formulated in a FS: $f(t)=\sum_{-\infty}^{\infty} a_{k} e^{j k 2 \pi t / T}$
$\therefore \Im[f(t)]=F(j \omega)=2 \pi \sum_{-\infty}^{\infty} a_{k} \delta\left(\omega-\frac{2 \pi}{T} k\right)$
\therefore FT of a periodic function is a series of unit impulse functions and is discrete in the frequency domain.

Note: FT of a train of unit impulses $f(t)=\sum_{-\infty}^{\infty} A_{n} \delta(t-n T)$
$\mathfrak{J}[f(t)]=F(j \omega)=\sum_{-\infty}^{\infty} A_{n} e^{-j \omega n T}$
\therefore FT of a train of unit impulses is a FS in the frequency domain and is continuous in the frequency domain

Energy off(t)

- Energy dissipated by, say, a 1 ohm resistance over a period T is

$$
\int_{-T / 2}^{T / 2} v(t)^{2} d t
$$

We also called this the quadratic content of a signal

- It can be shown that the quadratic content of a signal in terms of its FT is:

$$
\int_{-T_{2}}^{T / 2} f(t)^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(j \omega) F^{*}(j \omega) d \omega
$$

- And

$$
\int_{-T / 2}^{T / 2}|f(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(j \omega)|^{2} d \omega
$$

- The latter equation is called Parseval's Theorem

Homework

- Problem (1)
- Show that $F(j \omega)$ of an even function $f(t)=f(-t)$ is real
- Show that $F(j \omega)$ of an odd function $f(t)=-f(-t)$ is imaginary
- Problem (2)
- Find $F(j \omega)$ for the following functions and sketch their amplitude and phase spectra:
- $f_{a}(t)=e^{-\alpha t} u(t)$;
- $f_{b}(t)=e^{\alpha t} u(-t)+e^{-\alpha t} u(t)$;
- $f_{c}(t)=-e^{\alpha t} u(-t)+e^{-\alpha t} u(t)$;
- $f_{d}(t)=e^{t} \sin 10 t u(-t)$

Homework

- Problem (3)
- Calculate the $F(j \omega)$ for the waveforms below. Note that the second is the integral of the first.

- 4CT.5.1, 4CT.5.2
- 3CT.5.1, 3CT.5.2, 3СТ.5.3

