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Discrete Fourier Transform 

Lesson 11 
5DT  
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DFT 

•  Recall that for FS that if we have a 
continuous periodic signal in the time 
domain, it will have a infinite discrete 
values in the frequency domain 

•  Similarly, we can formulate the FT of a 
discrete signal in the time domain as having 
continuous periodic values in the frequency 
domain 
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RECALL: FT of a Periodic Function 

2

FT of a Periodic Function ( )

A periodic function can formulated in a FS: ( )

2[ ( )] ( ) 2 ( )

FT of a periodic function is a series of unit impulse functions
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Discrete Time Fourier Transform (DTFT) 

f [n] = f (t)t=nTs = f (nTs ) ⇒ f (nTs )δ (t − nTs
−∞

∞

∑ ) This is a model of a

 discrete signal from a continuous signal.

ℑ[ f [n]] = f (nTs )δ (t − nTs
−∞

∞

∑ )e− jωt dt
−∞

∞

∫ = f (nTs ) δ (t − nT )e− jωt dt
−∞

∞

∫
−∞

∞

∑

= f (nTs )e
− jωnTs

−∞

∞

∑ = f [n]e− jω̂n
−∞

∞

∑ ;  where ω̂ =  ωTs  and δ (t − nT )e− jωt dt
−∞

∞

∫ = e− jωnTs

= F ( jω̂ ) = F (e jω̂ ) since F (e jω̂ ) is periodic in 2π
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Discrete Fourier Transform (DFT) 
• The DTFT yield a spectrum which is a continuous function of ω̂

F (e jω̂ ) = f [n]e− jω̂n
n=−∞

∞

∑
• How do we get around this?  Sample the spectrum.
When we sampled in the time domain, we replaced t  by nTs  where Ts  is the distance (in time) between samples.

Therefore to sample in the frequency domain we replace ω  =  2π f  by 2πkfΔ  where fΔ  is the distance (in frequency) 

between spectrum samples.

Note that since ω̂ =ωTs =
ω
fs

;ω̂ = ω
fs
⇒

2πkfΔ
fs

F (e
jω̂= 

2πkfΔ
fs ) = F[k] = x[n]e

− j
2πkfΔ
fs

n

n=−∞

∞

∑
•Let us assume that there are only L samples for time domain and N  samples for the spectrum.

F[k] = f [n]e
− j

2πkfΔ
fs

n

n=0

L−1

∑

• Since fs  is the maxium frequency in the spectrum, then  fΔ=
fs
N

.   This is just the resolution of the displaced spectrum.

F[k] = f [n]e
− j

2πkfΔ
fs

n

n=0

L−1

∑ = f [n]e
− j

2πkfs
fsN

n

n=0

L−1

∑ = f [n]e
− j2π
N
kn

n=0

L−1

∑
• This is called the Discrete Fourier Transform
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Discrete Fourier Transform (DFT) 
•  Since the computer can only process discrete functions of finite time, we 

have to define a new Fourier Transform called the Discrete Fourier 
Transform, DFT. 
–  Do not confuse this with the Discrete-time Fourier Transform, DTFT. 

•  It is defined as  
F (k) = f [n]e

− j2π
N
kn

n=0

L−1

∑
where there are the L samples of x[n], 
we evaluate the Spectrum over N  frequencies, i.e., 0 ≤ k ≤ N −1,

and each frequency is fΔ  apart and chose fΔ=
fs
N

 

since fs  is the maximum frequency of the spectrum.

Therefore, fΔ=
fs
N

= 1
NTs

.  We call this the resolution of the spectrum.
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Discrete Fourier Transform (DFT) 

Let's start with the DTFT: X (e jω̂ ) = x[n]e− jω̂n
−∞

∞

∑ ;ω̂ =ωTs

Let's divide the spectrum is into N  frequencies equally spaced  fΔ  Hz apart 

(i.e., we are sampling the spectrum).   

2πfΔ 2(2πfΔ) 3(2πfΔ) N(2πfΔ)=2πfs 

. . . 
ω 

Therefore, let's define the kth sample in the frequency domain as ω k = 2π fk = 2πkfΔ
where k  goes from 1 to N .

When k = N ,  the highest frequency in the spectrum is ωN = 2πN
To

=2πNfΔ=2π fs  .
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Discrete Fourier Transform (DFT) 

2πfΔ 2(2πfΔ) 3(2πfΔ) N(2πfΔ) 

. . . 
ω 

2π fs /N 
. . . 

ω 2(2π fs /N) 3(2π fs /N) N(2π fs /N)=2π fs 

2π /N 
. . . 

2(2π /N) 3(2π /N) N(2π /N)=2π  ω̂

If  fs  meets the Nyquist rate, then the spectrum of f [n] = F (e jω̂ ) must end at or below 
fs
2

.

Therefore,  ω̂ k =ω kTs = 2πkfΔTs =
2πkfs
N

Ts =
2πk
N

.

Let's substitute ω̂ k  for ω̂  in the DTFT: F (e jω̂k ) = f [n]e− jω̂kn
n=−∞

∞

∑ = f [n]e
− j2πk

N
n

n=−∞

∞

∑
This sum will only be a function of k.  In addition, let's assume that there are L samples of x[n].

Then, we have the Discrete Fourier Transform, DFT as F[k] = F (e jω̂k ) = f [n]e
− j2πk

N
n

n=0

L−1

∑
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Discrete Fourier Transform (DFT) 

The spectrum now becomes  

F (e jω̂ ) | ⌢ω⇒ ⌢ωk
⇒  F (e j

⌢ωk ) = F (e
j2πk
N ) = F[k] = f [n]e

− j2πk
N
n

0

M −1

∑
using the M  samples of the time domain yielding N  samples in the frequency domain.

We usually choose N = M  and so F[k] = f [n]e
− j2πk

N
n

0

N−1

∑
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Why do we need DFT? 

•  From samples of f(t), we can use the DFT to 
get a frequency spectrum which is similar to 
F(jω) representation. 

•  This helps where we can not get an exact 
representation of f(t)  
–  in the laboratory 
–  In the field 
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Rectangular Pulse 
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NOTE

!

!

!
f [n] =1, n ≤ M

= 0, n > M

F (e jω̂ ) = f [n]
−∞

∞

∑ e− jω̂n = 1
−M

M

∑ e− jω̂n

Substitute m = n +M

F (e jω̂ ) = e− jω̂ (m−M )

0

2M

∑ = e jω̂M e− jω̂m
0

2M

∑

= e jω̂M 1− e− jω̂ (2M +1)

1− e− jω̂
,ω̂ ≠ 0,±2π ,±4π ,...

= 2M +1,ω̂ = 0,±2π ,±4π ,... Using L'Hopital's Rule
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Rectangular Pulse 
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FT of discrete signals Properties 

•  To assure a FT, convergence is required for 
the quadratic content of the discrete signal:  

•  To assure a FT, convergence is required for 
the discrete signal: 

•  Periodicity 
•  Linearity 

2| [ ] |
n

f n
∞

=−∞

<∞∑

| [ ] |
n

f n
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af n bf n aF e bF e
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ω ω
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FT of discrete signals Properties Continued 

•  Time Shifting 

•  Frequency Shifting 

•  Parseval’s Theorem 

ˆ
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Homework 
•  Problems 6.2-4 
 
 

N-1
n

n 0

6.2 Find the DFT of the sequence, [ ] sin( ) for n 0,1,2,...N-1.  

Hint express the sinusoid in exponential form.

6.3a)Find the DFT of the sequence [ ] in closed form. Use the identity bnT

nf n
N

f n e

π

ρ−

=

= =

=
N

N-1
n

n 0

1-  0 1;
1-

1        Note that N ;  
1-

       ) Express the DFT in polar form as a function of .
       c) Plot the DFT in terms of its magnitude and its phase angle for T .2, b 1 and 

b k

ρ ρ
ρ

ρ
ρ=

≡ < <

→∞ →

= =

∑

∑

N 8 for k 0,1,2,..7
6.4a) Repeat the 6.3 for b 10; T .01, N 20
6.6 Find the DFT for the following signals both are sampled at 1 sec  intervals:
a) ( ) [ ] 1;0 4
         Number of samples  5
b) (

s

s

m
f nT f n n

f nT

= =
= = =

= = ≤ ≤
=

) [ ] 1;0 4
           0;  9 4
         Number of samples  10

f n n
n

= = ≤ ≤
= > >

=
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Homework 

•  Using Matlab and its FFT function calculate 
and plot the time signal and spectrum for 
the following single. 
– A single sine wave of frequency 200 Hz 
– A single square wave of frequency 200 Hz 
– Two simultaneous sine wave of frequency 200 

and 200/3 Hz 
– Two sequential sine wave of frequency 200 and 

200/3 Hz 
– Compare the spectrum of the latter two cases. 
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Filters 

Lesson 12 
3CT.5 – 6 
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Filters 
Recall: h(t) y(t) x(t) ∫ −=

∞

∞−
τττ dthxty )()()(

where h(t) is the response due to a unit impulse function d(t) 

OR 

H(jω) Y(jω) X(jω) 

where H(jω) is the network response in phasor form 

By choosing H(jω) or h(t) we can shape the output y(t) for a 
given x(t)’s  

OR  

in other words, we can choose H(jω) to filter x(t) to obtain a 
desired y(t)  
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Types of Filtering 

H(jω) 
Filter out unwanted high frequencies (noise): e.g., radio signal from a satellite 

H(jω) 
Filter out unwanted low frequencies (noise): e.g., power line disruption 

H(jω) 

Separate signals in their frequency components: e.g., stereo recording 
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Filters 
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Idealized Filters 

•  Real filters can distort the signal since the filter 
can treat each frequency different and, therefore, 
change the signal’s form 

•  Then how do we get distortionless transmission? 
–  In general, V2(jω)=H(jω)V1(jω) where H(jω)=  |H(jω)|

ejθ (ω) where |H(jω)| is the amplitude and θ(ω) is the 
phase angle  

–  To be distortionless v2(t) should have the same shape as 
v1(t) and can be a time shift of v2(t) or v2(t)=hov1(t-Td) 

–  Then, we need to have H(jω)=hoe-jωTd where the 
amplitude is independent of frequency and the phase 
angle linear with ω. 
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Idealized Filters Continued 
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Idealized Filters Formulation 
Low Pass with cutoff frequency 

( )   for 

               0 elsewhere

High Pass with cutoff frequency 

( )   for | |

               0 elsewhere
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d

d

c
j T

lp o c c

c
j T

hp o c

H j h e

H j h e

ω

ω

ω
ω ω ω ω

ω
ω ω ω

−

−

= − < <

= >

1 2

2 1

requencies  and 

( )   for | |

                0 elsewhere

dj T
bp oH j h e ω

ω ω
ω ω ω ω−= > >

ho 

ωc - ωc 

ho 

ωc - ωc 

ho 

ω2 ω1 

ho 

-ω1 -ω2 



BME 333 Biomedical Signals and Systems 
- J.Schesser 

90 

Response of an Ideal Low Pass Filter to a 
Unit Impulse 
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This shows the peak of Sa is proportional to the cutoff 
frequency and that v2(t) is nonzero for t<0….Ooops 

Ideal Filters are not realizable but are still a useful 
mathematical tool! 
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Response to a Real LP Filter 
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Although the shapes of the spectrum and time plots are similar to the ideal 
filter, there is no sharp cutoff and no anticipatory time function.  The 
advantage to studying ideal filters is that analysis is simpler. 
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Response to a Real LP Filter 
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Response to a Real LP Filter 
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Discrete Signal Filters 
Similar to Continuous Signal Filters 
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Homework 
•  Find the response to the δ(t) for 

–  Bandpass filter with lower frequency f1 and upper frequency f2=2 f1  
–  Band-elimination filter: 

 H(jw)=hoe-jωTd, 0 < |ω| < ω1 and |ω| > ω2 
             = 0, ω1< |ω| < ω2 

•  Using Matlab build an ideal bandpass filter and calculate the output 
of the filter for a square wave input.  Show cases where the filter 
removes a single harmonic (e.g., 1st, 2nd and 3rd) and removes 2 or 
more harmonics.  Plot both the time domain and frequency domain 
for these signals. 

–  Do this calculation in the frequency domain Hint: calculate the 
frequency response of the filter, multiply this with input using its 
spectrum to get the output spectrum, and invert the output spectrum to 
get the time domain plot of the output.  (You may need to use fft and 
ifft.) 

–  Repeat this calculation in the time domain using the fdatool. 
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Homework 
•  Prove that for the impulse response to a real filter  

•  Use Matlab to calculate a single pole low pass filter 
and a single pole high pass filter. Plot the Bode plots 
for each and then apply them to a square wave.  Plot 
the input and output signal spectrum and time 
signal. 
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