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Filters 

Lesson 12 
3CT.5 – 6 
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Filters 
Recall: h(t) y(t) x(t) ∫ −=

∞

∞−
τττ dthxty )()()(

where h(t) is the response due to a unit impulse function d(t) 

OR 

H(jω) Y(jω) X(jω) 

where H(jω) is the network response in phasor form 

By choosing H(jω) or h(t) we can shape the output y(t) for a 
given x(t)’s  

OR  

in other words, we can choose H(jω) to filter x(t) to obtain a 
desired y(t)  
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Types of Filtering 

H(jω) 
Filter out unwanted high frequencies (noise): e.g., radio signal from a satellite 

H(jω) 
Filter out unwanted low frequencies (noise): e.g., power line disruption 

H(jω) 

Separate signals in their frequency components: e.g., stereo recording 
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Filters 
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Idealized Filters 

•  Real filters can distort the signal since the filter 
can treat each frequency different and, therefore, 
change the signal’s form 

•  Then how do we get distortionless transmission? 
–  In general, V2(jω)=H(jω)V1(jω) where H(jω)=  |H(jω)|

ejθ (ω) where |H(jω)| is the amplitude and θ(ω) is the 
phase angle  

–  To be distortionless v2(t) should have the same shape as 
v1(t) and can be a time shift of v2(t) or v2(t)=hov1(t-Td) 

–  Then, we need to have H(jω)=hoe-jωTd where the 
amplitude is independent of frequency and the phase 
angle linear with ω. 
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Idealized Filters Continued 
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Idealized Filters Formulation 
Low Pass with cutoff frequency 
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Response of an Ideal Low Pass Filter to a 
Unit Impulse 
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This shows the peak of Sa is proportional to the cutoff 
frequency and that v2(t) is nonzero for t<0….Ooops 

Ideal Filters are not realizable but are still a useful 
mathematical tool! 
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Response to a Real LP Filter 
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Although the shapes of the spectrum and time plots are similar to the ideal 
filter, there is no sharp cutoff and no anticipatory time function.  The 
advantage to studying ideal filters is that analysis is simpler. 
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Response to a Real LP Filter 
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Response to a Real LP Filter 
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Discrete Signal Filters 
Similar to Continuous Signal Filters 
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Homework 
•  Find the response to the δ(t) for 

–  Bandpass filter with lower frequency f1 and upper frequency f2=2 f1  
–  Band-elimination filter: 

 H(jw)=hoe-jωTd, 0 < |ω| < ω1 and |ω| > ω2 
             = 0, ω1< |ω| < ω2 

•  Using Matlab build an ideal bandpass filter and calculate the output 
of the filter for a square wave input.  Show cases where the filter 
removes a single harmonic (e.g., 1st, 2nd and 3rd) and removes 2 or 
more harmonics.  Plot both the time domain and frequency domain 
for these signals. 

–  Do this calculation in the frequency domain Hint: calculate the 
frequency response of the filter, multiply this with input using its 
spectrum to get the output spectrum, and invert the output spectrum to 
get the time domain plot of the output.  (You may need to use fft and 
ifft.) 

–  Repeat this calculation in the time domain using the fdatool. 
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Homework 
•  Prove that for the impulse response to a real filter  

•  Use Matlab to calculate a single pole low pass filter 
and a single pole high pass filter. Plot the Bode plots 
for each and then apply them to a square wave.  Plot 
the input and output signal spectrum and time 
signal. 
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