Modulation

Lesson 13
 4CT. 5

Modulation

- Let's look at two Kinds of Modulation
- Amplitude Modulation

$$
f(t)=A(t) \cos \omega t
$$

- Angle Modulation

$$
f(t)=A \cos [f(t)]
$$

- Where $A(t)$ and $f(t)$ contain the information portion of $f(t)$ and this information is found in either the amplitude and angle of the carrier, respectively.

Band Limited Signals

- A signal $m(t)$ is band limited (BL) when

$$
\mathfrak{I}[m(t)]=M(j \omega) \equiv 0 ; \text { for } \mid \omega>\omega_{M}
$$

that is, $m(t)$ is limited to the band of
frequencies below ω_{M}

- Examples:
- Voice is BL.
- Video is BL
- We can always obtain a BL signal by passing a signal through a Low Pass filter

Amplitude Modulation

Recall if $\mathfrak{S}[m(t)]=M(j \omega)$, then
$\mathfrak{I}\left[m(t) e^{j \omega_{o} t}\right]=M\left[j\left(\omega-\omega_{o}\right)\right]$
$\mathfrak{S}[f(t)]=\mathfrak{S}\left[m(t) \cos \omega_{o} t\right]=\frac{1}{2}\left\{M\left[j\left(\omega-\omega_{o}\right)\right]+M\left[j\left(\omega+\omega_{o}\right)\right]\right\}$
If $m(t)$ is BL , then $m(t) \cos (\omega t)$ is also BL

AM Radio Signal

Define: $f(t)=K[1+m(t)] \cos \omega_{o} t$, assuming $|m(t)|<1$ and $m(t)$ is $\mathrm{BL}<\omega_{\mathrm{M}}$

$$
\begin{aligned}
\mathfrak{I}[f(t)] & =\mathfrak{S}\left[K\{1+m(t)\} \cos \omega_{o} t\right] \\
& =K \pi\left\{\delta\left(\omega-\omega_{o}\right)+\delta\left(\omega+\omega_{o}\right)\right\}+\frac{K}{2}\left\{M\left[j\left(\omega-\omega_{o}\right)\right]+M\left[j\left(\omega+\omega_{o}\right)\right]\right\}
\end{aligned}
$$

Carrier

Upper \& Lower
Sidebands

AM Continued

- If $\omega_{M} \ll \omega_{o}$, that is $m(t)$ varies slower than the carrier frequency. we have the following signal:

AM signal for $\omega_{o} / \omega_{M}=10$ and $|m(t)|=25 \%$

Original signal still apparent in amplitude
Overlap implies loss or distortion of information

Construction of an AM Signal \& Reconstruction of $m(t)$

- Construction (Modulation): Multiplication of $1+m(t)$ and $\cos \omega_{o} t$ using a variable parametric device or nonlinear modulator
- Linear Modulators
- Square Law Modulators

- Reconstruction of $m(t)$ (Demodulation):
- Multiplication of AM signal with the carrier signal
- Filter out $m(t)$
- Halfwave rectification followed by envelope detection.

Reconstruction

- Multiplication of AM signal with carrier:

$$
\begin{aligned}
& f(t) \cos \omega_{o} t=[1+m(t)] \cos \omega_{o} t \times \cos \omega_{o} t=[1+m(t)] \cos ^{2} \omega_{o} t \\
& =[1+m(t)]+[1+m(t)] \cos 2 \omega_{o} t
\end{aligned}
$$

- Filter out sidebands of AM

- Halfwave Rectification and Envelop

Detection

Halfwave Rectification and Envelope Detection

$V_{I}=[1+m(\mathrm{t})] \cos w t$

$V_{\text {halfwave }} \quad V_{2}$

Other AM Signals

- To use less energy:
- Double Side Band Suppressed Carrier (DSBSC), send $m(t) \cos \omega_{o} t$

- Single Side Band Suppressed Carrier (SSBSC), [for simplicity assume $\left.m(t)=\cos \omega_{s} t\right]$, send $\cos \left(\omega_{o}+\omega_{s)} t\right)$

BME 333 Biomedical Signals and Systems

Homework

- Problem (1)
- The signal $f(t)=\left(1+m_{o} \cos t\right) \cos 100 t$ is applied to a series RLC circuit where $L=10 \mathrm{~h}, \quad C=10$ $\mathrm{mF}, R=10 \mathrm{k} \mathrm{W}$. Calculate $v(t)$, the voltage across the resistance.
- Problem (2)
- The SSBSC version of $f(t)$ is applied to the same circuit. Calculate $v(t)$.

