Modulation

Lesson 13 4CT.5

BME 333 Biomedical Signals and Systems - J.Schesser

Modulation

- Let's look at two Kinds of Modulation
 - Amplitude Modulation

 $f(t)=A(t)\cos \omega t$

Angle Modulation

f(t) = Acos[f(t)]

- Where A(t) and f(t) contain the information portion of f(t) and this information is found in either the amplitude and angle of the carrier, respectively.

Band Limited Signals

• A signal m(t) is band limited (BL) when

 $\Im[m(t)] = M(j\omega) \equiv 0; \text{ for } |\omega| > \omega_{M}$ that is, m(t) is limited to the band of frequencies below ω_{M}

- Examples:
 - Voice is BL.
 - Video is BL
- We can always obtain a BL signal by passing a signal through a Low Pass filter

Amplitude Modulation

Recall if
$$\Im[m(t)] = M(j\omega)$$
, then
 $\Im[m(t)e^{j\omega_o t}] = M[j(\omega - \omega_o)]$
 $\Im[f(t)] = \Im[m(t)\cos\omega_o t] = \frac{1}{2} \{M[j(\omega - \omega_o)] + M[j(\omega + \omega_o)]\}$
If $m(t)$ is BL, then $m(t)\cos(\omega t)$ is also BL

BME 333 Biomedical Signals and Systems - J.Schesser

141

AM Radio Signal

Define: $f(t) = K[1 + m(t)] \cos \omega_o t$, assuming |m(t)| < 1 and m(t) is BL $< \omega_M$

BME 333 Biomedical Signals and Systems - J.Schesser

142

AM Continued

• If $\omega_M \ll \omega_o$, that is m(t) varies slower than the carrier frequency. we have the following signal:

AM signal for $\omega_o / \omega_M = 10$ and |m(t)| = 25%

Original signal still apparent in amplitude |m(t)|=100% |m(t)|=200% |m(t)|=200%

Construction of an AM Signal & Reconstruction of m(t)

- Construction (Modulation): Multiplication of l+m(t) and $\cos \omega_0 t$ using a variable parametric device or nonlinear modulator
 - Linear Modulators
 - Square Law Modulators

- Reconstruction of m(t) (Demodulation):
 - Multiplication of AM signal with the carrier signal
 - Filter out m(t)
 - Halfwave rectification followed by envelope detection.

Reconstruction

- Multiplication of AM signal with carrier: $f(t)\cos\omega_{o}t = [1+m(t)]\cos\omega_{o}t \times \cos\omega_{o}t = [1+m(t)]\cos^{2}\omega_{o}t$ $= [1+m(t)] + [1+m(t)]\cos 2\omega_{o}t$
- Filter out sidebands of AM

• Halfwave Rectification and Envelop Detection

Halfwave Rectification and Envelope Detection

BME 333 Biomedical Signals and Systems - J.Schesser

Other AM Signals

- To use less energy:
 - Double Side Band Suppressed Carrier (DSBSC), send $m(t)cos \omega_o t$ $|F(j\omega)|$

 $-\omega_o - \omega_M - \omega_o - \omega_o + \omega_M - \omega_o - \omega_M - \omega_0 - \omega_M - \omega_0 - \omega_M - \omega_0 - \omega_M - \omega_0 - \omega_0 - \omega_M - \omega_0 - \omega_0$

- Single Side Band Suppressed Carrier (SSBSC), [for simplicity assume $m(t)=\cos \omega_s t$], send $\cos (\omega_o + \omega_{s})t$)

Homework

- Problem (1)
 - The signal $f(t)=(1+m_o \cos t)\cos 100t$ is applied to a series RLC circuit where L=10 h, C=10mF, R=10k W. Calculate v(t), the voltage across the resistance.
- Problem (2)
 - The SSBSC version of f(t) is applied to the same circuit. Calculate v(t).