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The Sampling Theorem 

Lesson 14 
Sec 5.3.3 
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Pulse Amplitude Modulation 

•  Instead of using a cosine function as the carrier, let’s 
use a pulse train.  This is called PAM. 
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Pulse Amplitude Modulation 
•  Let m(t) be the signal carrying information which 

modulates the periodic PAM signal p(t) with fundamental 
frequency fo = 1/ To. 
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The FT of a PAM signal 
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Note that to assure that there is no loss of information, we must have fo>fM 
and the minimum value of fo is 2 fM or To <= 1/ (2 fM.).  The rate 2fM is called 
the Nyquist Sampling rate. 
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Calculation of PAM for a true Impulse Train 
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Shannon’s Sampling Theory 
•  A BL signal which has no spectral components above the frequency fM 

is uniquely specified by its values at uniform intervals of 1/(2 fM) 
seconds. 
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Shannon’s Sampling Theory 
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Shannon’s Sampling Theory Continued 
•  These latter equations state: 

1.  The signal m(t) is sampled at the Nyquist rate which is represented 
by f(t) = m(t)p(t)  

2.  This signal, f(t), which contains the samples of m(t) is transmitted. 
3.  The spectrum of the transmitted signal f(t) → F(jω) can be shown to 

be periodic in the FREQUENCY DOMAIN where its fundamental 
shape is M(jω) the spectrum of m(t).   

4.  Since F(jω) is periodic, it can be represented by a Fourier Series, 
where Fk is the Fourier coefficients of this series. 

5.  We showed that the Fk ‘s are specified by the samples of m(t)  

2 2[ ( ) ( ) ( )]  ( ) 2 [ ( 2 )]

 ( ), ( )

Mjk
M M kk

k s k s
M M

f t p t m t F j f M j k e

m kT m kT

πω ωω ω ω

π π
ω ω

∞
∞

=−∞
−∞

−

ℑ = = = − =

= − =

∑ ∑ F

F F



BME 333 Biomedical Signals and Systems 
- J.Schesser 

157 

Shannon’s Sampling Theory Continued 
6.  Therefore when we transmit f(t), which are the samples of 

m(t), we can extract m(t) from it since  
a.  The spectrum of f(t), F(jω), contains the spectrum of m(t), M(jω) 
b.   F(jω) which is periodic can be represented by a Fourier Series 

with coefficients Fk 
c.  We can calculate Fk since it is specified by the samples of m(t) 

(which is just f(t)).   
d.  Once we have Fk we can get F(jω) and hence M(jω). 
e.  From M(jω) we then can get m(t) and, therefore we get m(t) from 

the samples of m(t). 
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Shannon’s Sampling Theory Continued 

•  The rate 1/(2fM) is called the Nyquist 
Sampling rate 

•  Note the Spectrum if we sample at less than 
the Nyquist rate: 

|F(jω)| 

-fo fo -2fo 2fo fM 
-fM 3fo 4fo 
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Reconstruction of f(t) From the Nyquist 
Samples of f(t) 

2 2

2 2

2 2

2 2

1 1( ) ( ) ( )
2 2

FS  in the frequency domain 

( )

( )

( )

1( ) ( )
2

1
2

M M

M M

M

M

M

M

M

M

j t j t

jk
kk

jk
kk

jk
Mk

M

jk
Mk

M

j t

m t M j e d F j e d

F j e

e

m k e

m k e

m t F j e d

ω ω
ω ω

ω ω

πω ω

πω ω

πω ω

πω ω

ω
ω

ω

ω ω ω ω
π π

ω

π π ω
ω
π π ω
ω

ω ω
π

π

− −

∞

=−∞

−∞ −
−=∞

−∞ −
=∞

∞ −
=−∞

−

= =

=

=

=

=

=

=

∫ ∫

∑
∑
∑

∑

∫

F

F

2 2

( )

( )

( )
2

sin[ ( )]( ) ( ) [ ( )]
[ ( )]

M

M

M

M M

M

jk j t
Mk

M

j t k

Mk
M

M M
M M M Mk k

M M

m k e e d

em k d

t km k m k Sa t k
t k

ω
πω ω ω

ω

ω π ω ω

ω

π π ω ω
ω

π ω ω
ω

ω π ωπ ω π ω ω π ω
ω π ω

∞ −
=−∞

−

−
−∞

=∞
−

−∞ ∞

=∞ =−∞

=

−= = −
−

∑∫

∑ ∫

∑ ∑

•  Now we know why we 
call Sa(x) the sampling 
function. 

•  Also recall that the unit 
impulse response of a 
LPF is the Sa(x). 

•  So apply the  samples, 
m(kπ/ωM), to a LPF and 
we will get back m(t). 
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Response of an Ideal Low Pass Filter to a 
Unit Impulse 
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This shows the peak of Sa is proportional to the cutoff 
frequency and that v2(t) is nonzero for t<0….Ooops 

Ideal Filters are not realizable but are still a useful 
mathematical tool! 
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Sampling Theorem Conclusion 

•  If we have BL signal, don’t send the whole signal. 
•  Sample it at a rate of greater than or equal to 1/(2fM) where 

fM is the highest frequency 
•  Send the samples 
•  To recover the transmitted samples, pass them through a 

LPF. 

•  This leads up to “new” products: Digital TV, DVDs, CD 
music, Digital Photography 

•  This also leads to even greater transmission opportunities: 
Time Division Multiplexing or TDM. 
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Time Division Multiplexing 

•  Send several signals at the “same” time over the 
same transmission medium. 

•  This concept has spawned Telecommunications 
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Homework 
•  Problem (1) 

–  A BL signal with maximum frequency 1000 Hz is sampled at 
rate of 1000 samples per second, 2000 samples per second, and 
4000 samples per second.  Draw the sampled spectrum for each 
and describe whether the samples are sufficient to reconstruct 
the original signal 

•  Problem (2) 
–  20 BL signals (1000 Hz) are sampled at the Nyquist Rate.   

Calculate the pulse width of each sample to support the 
multiplex of these 20 signals.  Calculate the pulse rate of the 
aggregate multiplex signal.  Repeat for 200 signals. 

•  Problem (3) 
–  Consider N signals, each BL (1 Hz).  If a transmission system 

can handle 40 pulses per second, how many messages can be 
sent? Repeat for 100 pulses per second. 


