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Some Review
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What Is this Course All About ?

• To Gain an Appreciation of the Various 
Types of Signals and Systems 

• To Analyze The Various Types of Systems
• To Learn the Skills and Tools needed to 

Perform These Analyses.
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What are Signals?

• A Signal is a term used to denote the 
information carrying property being 
transmitted to or from an entity such as a 
device, instrument, or physiological source

• Examples:
– Radio and Television Signals
– Telecommunications and Computer Signals
– Biomedical Engineering Signals
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What is a System?

• A System is a term used to denote an entity 
that processes a Signal

• A System has inputs and outputs
• Examples

– Amplifiers, Radios, Televisions
– Telephone, Modem, Computer
– Oscilloscopes, EKG, EEG, EMG
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How do we describe Signals?

• Signals are associated with an independent 
variable(s): e.g., time, single or multivariate 
spatial coordinate
– Most instrumentation signals have time as their 

independent variable
– A digital photograph or image has spatial 

coordinates as its independent variables
• Signal Independent Variables can be either 

Continuous or Discrete
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Continuous-Time Signals
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Discrete-Time Signals
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Continuous-Time Signal

A Discrete-Time Signal can be obtained from 
a Continuous-Time signal by Sampling.

Discrete-Time Signal
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Discrete Spatial Signal

This image consists of 200 x 158 pixels where 
each pixel can take on a value representing 
the color displayed in the form of [r,g,b].
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Signals have Properties

• Take on Real or Complex values

• Periodic or non-periodic

• Symmetries

• Bounded or Unbounded
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Complex Signals

• Continuous Signals have to be solutions of 
differential equations they can be in the form:

• Discrete Signals have to be solutions of 
difference equations they can be in the form:

where Ai, Bi , etc., si and zi can be complex 
numbers with real and imaginary parts.
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Periodic or non-periodic

• Periodic signals are those which satisfy
x(t +T) = x(t)  for all t 

and T is called the Period.
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Sinusoidal Continuous Signals
• Sinusoidal Signals are periodic functions which are based on the sine or 

cosine function from trigonometry.
• The general form of a Sinusoidal Signal

x(t)=A cos(ωot +ϕ)
Or

x(t)=A cos(2πfot +ϕ)

– where cos (∙) represent the cosine function
• We can also use sin(∙), the sine function

– ωot +ϕ or 2πfot +ϕ is angle (in radians) of the cosine function 
• Since the angle depends on time, it makes x(t) a signal 

– ωo is the radian frequency of the sinusoidal signal
• fo is called the cyclical frequency of the sinusoidal signal

– ϕ is the phase shift or phase angle
– A is the amplitude of the signal



Example
x(t)=10 cos(2π(440)t -0.4π)

One cycle takes 1/440 = .00227 seconds
This is called the period, T, of the sinusoid and is 

equal to the inverse of the frequency, f
BME 333 Biomedical Signals and Systems 
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Sine and Cosine Functions
• Definition of sine and cosine

• Depending upon the quadrant of θ the sine and cosine function 
changes

– As the θ increases from 0 to π/2, the cosine decreases from 1 to 0 and the 
sine increases from 0 to 1

– As the θ increases beyond π/2 to π, the cosine decreases from 0 to -1 and 
the sine decreases from 1 to 0 

– As the θ increases beyond π to 3π/2, the cosine increases from -1 to 0 and 
the sine decreases from 0 to -1 

– As the θ increases beyond 3π/2 to 2π, the cosine increases from 0 to 1 and 
the sine increases from -1 to 0 
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Property

Equivalence

Periodicity

Evenness of cosine

Oddness of sine

Zeros of sine

Zeros of cosine

Ones of the cosine

Ones of the sine

Negative ones of the cosine

Negative ones of the sine

Equation

sin θ = cos (θ – π / 2) or  cos θ = sin (θ + π/2)

cos (θ + 2πk)=cos θ or sin (θ +2πk)=sin θ where k is an integer

cos θ = cos (-θ )

sin θ = -sin (-θ )

sin πk = 0, when k is an integer

cos [π(k+1)/2] = 0, when k is an even integer; odd multiples of π/2

cos 2πk = 1, when k is an integer; even multiples of π

sin [π(k+1/2)] = 1, when k is an even integer; alternate odd multiples of π/2

cos [2π(k +1)/2]= -1, when k is an integer; odd multiples of  π

sin [π(k +1/2)]= -1, when k is an odd integer; alternate odd multiples of 3π/2
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Signal Symmetries

• Even Signals are defined as
• Odd Signals are defined as

)()( textex 
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Sinusoidal Signals
x(t)=20 cos(2π(40)t -0.4π)

A = 20, ωo = 2π(40),  fo= 40, θ = - 0.4π
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Frequencies

A cos(2πfot + θ) 
for 

200 Hz
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Relation of Period to Frequency

• Period of a sinusoid, To, is the length of one cycle and 
To = 1/fo

• The following relationship must be true for all Signals 
which are periodic (not just sinusoids)

x(t + To) = x(t)
• So

A cos(ωo(t + To) + θ) = A cos(ωot + ωoTo + θ)
A cos(ωot + ωoTo + θ) = A cos(2πfot +2π foTo + θ)
A cos(2πfot +2π foTo + θ) = A cos(2πfot +2π + θ)

A cos(2πfot +2π + θ) = A cos(2πfot + θ) =A cos(ωot + θ)
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Phase shift and Time Shift
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Phase Shift and Time Shift
• The phase shift parameter θ (with frequency) determines the time locations of 

the maxima and minima of the sinusoid.
• When θ = 0, then for positive peak at t = 0.
• When θ ≠ 0, then the phase shift determines how much the maximum is shifted 

from t = 0.
• However, delaying a signal by t1 seconds, also shifts its waveform.

x(t-t1) = A cos(ωo(t-t1))  = A cos(ωot-ωot1) 
ωot-ωot1 =  ωot +θ

-ωot1 = θ
t1 = - θ / ωo = -θ / 2πfo

 θ= - 2πfot1=-2π(t1/ To)

• Note that a positive (negative) value of t1 equates to a delay (advance)
• And a a positive (negative) value of θ equates to an advance (delay)



Phase and Time Shift

• Note that a positive (negative) value of t1 equates to a delay 
(advance)

• And a a positive (negative) value of θ equates to an advance 
(delay)

x(t) =5 cos(2π 50t + θ)
θ =  π / 2; -π  / 2

t1 = - π / 2 / (2π 50) = -.005 sec;  +.005 sec
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Identities and Derivatives
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Number Equation

1 sin2θ +cos2θ = 1

2 cos 2θ  = cos2θ – sin2θ

3 sin 2θ  = 2 sin θ cos θ

4 sin (a ± b) = sin a cos b ± cos a sin b

5 cos (a ± b) = cos a cos b sin a sin b

6 cos a cos b = [cos (a + b) + cos (a - b)]/2

7 sin a sin b = [cos (a - b) - cos (a + b)]/2

8 cos2θ = [1 + cos 2θ]/2

9 sin2θ = [1 - cos 2θ]/2

10 d sin θ / dθ = cos θ

11 d cos θ / dθ = -sin θ
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Bounded or Unbounded

• For Bounded Signals                approaches a 
constant value as 

• Unbounded Signals approach infinity as 
t
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Euler’s Formula

Basic Formula
e j  cos  j sin

(Note that: e  cos  j sin )

Also:
e jt  cost  jsint
And
e j( t )  cos(t )  j sin(t )
And one more where s   j
est  e( j )t  e t cos(t )  je t sin(t )
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More on Complex Signals
• Let’s assume that x(t)=Ae st for all t, A is a real 

constant and s is complex and is given as s = α + jω
• If s = α is real then x(t) is a real exponential 

function x(t)=Ae αt

• If s = j ω is imaginary and using Euler’s formula 
then x(t) is a sinusoidal function x(t)=Ae jωt = A(cos
ωt+j sin ωt) [Book uses, F: ω=2πF]

• If s is complex then x(t) is called a damped 
sinusoidal function for s < 0 and is of the form

x(t)=Aest = Ae αt (cos ωt + j sin ωt)



More on Complex Signals
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Homework
1. Continuous and Discrete Signals Use Matlab to plot the 

signals; submit your code
1. f(t) = 1- e-t is a continuous signal.  Draw its waveform.
2. Draw the discrete version of f(t) for T=0.25.

2. Periodic Signals
1. Show that tan t is periodic.  What is its period?
2. Is e-t periodic?  Why not?
3. Is e-t sin(t) periodic?  Describe?

3. Bounded Signals
1. Prove that f(t) = e-t is bounded for t > 0.
2. What about  f(t) = e-t for all t.

4. Biosignals
1. For a typical EEG, EKG, and EMG signal, is the signal 

periodic?  If so, what is it’s period.
2. For a typical EEG, EKG, and EMG signal, is the signal 

bounded?  If so, describe why.
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Homework cont’d
5. Symmetry

1. Is cos t even or odd? sin t? tan t?
2. What about cos t x sin t ? tan t x cos t ?
3. What is the symmetry of the product of:

1. Two even functions
2. Two odd Functions
3. Even and Odd function

6. CT.1.2.1,CT.1.2,3
7. DT.1.2.1,DT.1.2.3 
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Complex Numbers 
and 

the Unit Impulse Function

Lesson #2
2CT.2,4,

3CT.2
Appendix A
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What is the solution to?

1. x2+4x+3=0

3,12
24

2
44

2
12164

2
3444 2

2,1



x
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What is the solution to?

2. x2+4x+5=0

?????  2
44

2
20164

2
5444 2

2,1



x
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What is the Square Root of a Negative 
Number?

• We define the square root of a negative 
number as an imaginary number

• We define 

• Then our solution becomes:
ans)mathematicfor  ( engineersfor    1 i j 

12,12
2

24
2

44  
2

44
2
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2

5444 2
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jjjj
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The Complex Plane

• z = x+jy is a complex number where:
x = Re{z} is the real part of z
y = Im{z} is the imaginary part of z

• We can define the complex plane and we can 
define 2 representations for a complex number:

Re{z}

Im{z}

x

y

z = x+jy

(x,y)
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Rectangular Form
• Rectangular (or cartesian) form of a complex 

number is given as
z = x+jy
x = Re{z} is the real part of z
y = Im{z} is the imaginary part of z

Re{z}

Im{z}

Rectangular or Cartesian
x

y

z = x+jy

(x,y)



• z = r e jθ = r θ is a complex number where:
• r is the magnitude of z
• θ is the angle or argument of z (arg z)
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Polar Form

Re{z}

Im{z}

Polar
x

y

z = r e jθ

(r,)

θ

r





BME 333 Biomedical Signals and Systems 
- J.Schesser

39

Relationships between the Polar 
and Rectangular Forms

z = x + jy = r e jθ

• Relationship of Polar to the Rectangular Form:
x = Re{z} = r cos θ
y = Im{z} = r sin θ

• Relationship of Rectangular to Polar Form:

)arctan(   and    22

x
yyxr  
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Relationships between the Polar 
and Rectangular Forms

z = x + jy = r e jθ

• Relationship of Polar to the Rectangular Form:
x = Re{z} = r cos θ
y = Im{z} = r sin θ

• Relationship of Rectangular to Polar Form:

)arctan(   and    22

x
yyxr  
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Addition of 2 complex numbers
• When two complex numbers are added, it is best to use 

the rectangular form.
• The real part of the sum is the sum of the real parts and 

imaginary part of the sum is the sum of the imaginary 
parts.

• Example: z3 = z1 + z2

)()(
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2121

2121

2211213

222111

yyjxx
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jyxjyxzzz
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y2 z
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Multiplication of 2 complex numbers
• When two complex numbers are multiplied, it is best 

to use the polar form:
• Example: z3 = z1 x z2

• We multiply the magnitudes and add the phase angles

)(
21
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21

)(
2

)(
1213

)(
22

)(
11

2121

21

21 ;


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

jjj

jj

jj

erreerr
ererzzz

erzerz

Re

Im

θ1

r
θ2rr3 = r1 r2

θ3= θ1 +

θ2
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Some examples
51505)

2
sin(5)

2
cos(55 2 jjje j 



50515)sin(5)cos(55  jje j 

5e
j
2  5e j  j55  5(1 j)  5 (1)2 12 e j tan1(1)  5 2e

j 3
4

Re

Im

50515)sin(5)cos(5)sin(5)cos(55  jjje j 

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Some examples

24 55
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Some examples

18.1
24 24.955 jjj eee 


Re

Im
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Complex Exponential Signals

• A complex exponential signal is define as:

• Note that it is defined in polar form where
– the magnitude of z(t) is |z(t)| = A 
– the angle (or argument, arg z(t) ) of z(t) = (ωot + θ)

• Where ωo is called the radian frequency and θ is the phase angle 
(phase shift)

( )( ) oj tz t Ae  



Plotting the waveform of a complex 
exponential signal

• For an complex signal, we plot the real part and the 
imaginary part separately.

• Example:  
z(t) = 20e j(2π(40)t-0.4π) = 20e j(80πt-0.4π)

= 20 cos(80πt-0.4π) + j20 sin(80πt-0.4π) 
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Complex Exponential Function as a function of 
time

• Let’s look at this 

Re{z}

Im{z}



tjteetz tjtj  2sin2cos1)( 2)1(2 

t=2/8 seconds 

arg(z(t))=2π x2/8= π /2; z(t)= 0 + j1
t=1/8 seconds 

arg(z(t))=2π x1/8=π/4; z(t)=0.707+j 0.707

t=3/8 seconds 

arg(z(t))=2π x3/8 = 3 π /4; 

z(t)= -0.707+ j0.707
t=4/8 seconds 

arg(z(t))=2π x4/8 = π; z(t)= -1+ j0

t=5/8 seconds 

arg(z(t))=2π x5/8 = 5π /4;

z(t)= -0.707 - j0.707 t=6/8 seconds 

arg(z(t))=2π x6/8 = 3π /2; z(t) = 0 - j

t=7/8 seconds 

arg(z(t))=2π x7/8= 7π /4; 

z(t) = 0 .707- j0.707

t=0 seconds 

arg(z(t))=2π x0=0; z(t)=1+ j0

t=8/8 seconds 

arg(z(t))=2π x8/8 = 2π ; z(t)= 1+ j0
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Phasor Representation of a Complex Exponential 
Signal

• Using the multiplication rule, we can rewrite 
the complex exponential signal as

• X is complex amplitude of the complex 
exponential signal and is also called a phasor

( ) 2( )
where  is a complex number equal to

o o o o oj t j t j t j t j F tj j

j

z t Ae Ae e Ae e e e

Ae

      



    



X X
X

X
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Graphing a phasor

• X=A e jθ can be graphed in the complex plane with 
magnitude A and angle θ:

Re

Im

θ



X=A e jθ
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Graphing a Complex Signal in 
terms of its phasors

• Since a complex signal, z(t), is a phasor multiplying a 
complex exponential signal e jωot , then a complex 
signal can be viewed as a phasor rotating in time:

Re

Im

θ


( )( ) o oj t j tz t Ae e    X
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Re{z}

Im{z}

-10 -8 -6 -4 -2 0 2 4 6 8 10

0
3.14

6.28
9.42

12.56

Rotating Phasor

-10
-8
-6
-4
-2
0
2
4
6
8

10

0 3.14 6.28 9.42 12.56

(2 )( ) oj tj tz t Ae e   X
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Inverse Euler Formulas

• The inverse Euler formulas how the cosine and sine 
functions consist of complex exponentials

j
ee

ee

jj

jj

2
sin

2
cos

















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Sinusoidal Signals

• Note that * means complex conjugate and z(t) and 
z*(t) are called conjugate pairs

• This means that a cosine function consists of two 
complex exponential functions: one with positive 
frequency and one with negative frequency

• The amplitudes are complex conjugates

)
2

(

)
2

()cos(
)()(







jtjjtj

tjtj

o

eeeeA

eeAtA

oo

oo











)}({

)(
2
1)(

2
1

2
)cos(

tze

tztz

eetA
tjtj

o

oo










 

 XX
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Complex Conjugate

• A conjugate of a complex number has the 
same real part but negative imaginary part 
of the complex number

x = a + jb
x* = a – jb

• Note the following important properties
x + x* = 2 Re{x} = a + jb + (a – jb) = 2a
x - x* = j2 Im{x} = a + jb – (a – jb) =j 2b
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Rotating Conjugate Pairs

Re

Im

)}({

)}]]({)}({[)}({2[
2
1)}]](*{)}({[)}({2[

2
1

)}](*{)}(*{)}({)}({[
2
1)]()([

2
1

)(
2
1)(

2
1)cos(

tze

tzmtzmjtzetzmtzmjtze

tzmjtzetzmjtzetztz

tztztA o













z(t)

z*(t)

Note that the imaginary part 
is zero since the imaginary 
parts of each cancel each 

other.
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Sinusoid Signal Addition

• Adding several sinusoid signals with the 
same frequency but with different 
amplitudes and phase angles to be in a form 
of a single sinusoidal signal

• Proof of this uses identity 5:1

cos( ) cos( )
N

k o k oA t B t     

cos( ) cos cos sin sino o oA t A t A t       
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Proof of Sinusoid Signal Addition 
Algorithm

• The following shows how to calculate the sum of 2 phasors; it 
can be easily extended to more than 2 phasors:

1 1 2 2

1 1 2 2

Matching terms, we have:
cos cos cos
sin sin sin

B A A
B A A

  
  
 
 

1 1 2 2

1 1 1 1 2 2 2 2

1 1 2 2

cos( )                           cos( )                           cos( )  
cos cos sin sin cos cos sin sin cos cos sin sin

( cos cos )cos (

o o o

o o o o o o

o

A t A t B t
A t A t A t A t B t B t
A A t A

     
           
  

    
    

  1 1 2 2sin sin )sin cos cos sin sino o oA t B t B t        
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Proof of Sinusoid Signal Addition 
Algorithm

1 1 2 2

1 1 2 2

2 2

2 2
1 1 2 2 1 1 2 2

1 1 2 2

1 1 2 2

cos cos cos
sin sin sin

Since

( cos ) ( sin )
So

( cos cos ) ( sin sin )
And

sin tan
cos

sinarctan( )
cos
sin sinarctan( )
cos cos

B A A
B A A

B B B

B A A A A

B
B

B
B
A A
A A

  
  

 

   

 




 
 

 
 

 

   









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Example

2 2

cos(20 ) 1.7 cos(20 70 180) 1.9cos(20 200 180)

(1.7cos(70 180) 1.9cos(200 180)) (1.7sin(70 180) 1.9sin(200 180))
   1.532

1.7sin(70 180) 1.9sin(200 180)arctan(
1.7 cos(70 180) 1.9cos(200 180)

A t t t

A

     

   

 
 

    

   







2.47 141.79

1.532cos(20 2.47)

rad

t

 

 


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RECALL
Addition of Complex Numbers Rectangular form

• The real part of the sum is the sum of the 
real parts and imaginary part of the sum is 
the sum of the imaginary parts.

)()(

;

2121

2211213

222111

yyjxx
jyxjyxzzz

jyxzjyxz






26
)35()42(

3452
34;52

213

21

j
j

jjzzz
jzjz







34

26      
52

2

3

1

jz

jz
jz





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Phasor Addition

1

( ) ( )

1

1

cos( ) cos( )

{ } { }

{ } { }

o o k

o k o

N

o k o k

N
j t j t

k

N
j t j j tj

k

B t A t

e Be e A e

e Be e e A e e

   

  

   

 

  

  

  







1

1

{ } {( ) }

Therefore,

o k o

k

N
j t j j tj

k

N
jj

k

e Be e e A e e

Be A e

  



 






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An Easier Method for Adding 
Sinusoids using Phasors

1. Represent the sinusoidal signals by complex 
exponential signals

2. From these exponential signals, take the each phasor
in polar form and convert them to the Cartesian 
complex number form

3. Add the complex number to obtain a single complex 
number

4. Convert this complex number into its polar form
5. Using the phasor, reformate the sinusoidal signal by 

multiplying the phasor with e jωot and taking its real 
part
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Example

948.0204.1
)6498.0785.1(597.15814.0

formr rectangulain  phasors 2  theAdd 3) Step

213

j
jj

XXX






6498.0785.1
180200sin9.1180200cos9.1

formr rectangula phasor to itsConvert  2) Step
9.1

2. signalfor phasor   theFormulate  1) Step
)18020020cos(9.1)(

2

180200
22

2

1

j
jX

eeAX

ttx

jj














)475.220cos(532.1)(
phasor  thefrom signalresultant   theFormulate 5) Step

3  ttx 

597.15814.0
18070sin7.118070cos7.1

formr rectangula phasor to itsConvert  2) Step
7.1

1. signalfor phasor   theFormulate 1) Step
)1807020cos(7.1)(

1

18070
11

1

1

j
jX

eeAX

ttx

jj














475.2
3 532.1948.0204.1

formpolar  phasor toresultant  eConvert th 4) Step
jejX 
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NOTE!!!!

• The reason why we prefer the complex 
exponential representation of the real cosine 
signal:

• In solving equations and making other 
calculations, it easier to use the complex 
exponential form and then take the Real Part.

( )( ) { ( )} { }
cos( )

oj t

o

x t e z t e Ae
A t

 

 

  
 
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Phasors

• Note that the real sinusoidal function        
f(t)=Acos (ωt+ϕ)

can be represented by a complex function
f(t)=A cos (ωt+ϕ) = Re[Ae j(ωt+ϕ)]

• Let’s represent this function by a phasor which is 
its magnitude and phase angle:

• Therefore, we can use phasors to represent 
complex functions which makes it easy to solve 
and calculate system solutions

    AeAeAetAtf tjjtj ]Re[]Re[)cos()( )(
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Complex Numbers
• Constants:

• Functions:

1tan ( )2 2

2 2 1

    Rectangular Form
 is called the Real part of 
 is called the Imaginary part of 

tan ( )  Polar Form

bj a

s a jb
a s
b s

a b e
ba b a





 

 

  

Real axis

Imaginary 
axis

a

b

Example : e j t  cost  jsint
 (recall: e j  cos  jsin )

tan-1(b/a)

Real axis

Imaginary 
axis

Rotating 
Unit Vector 

at rate 

Complex 
Plane
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Example Using ODE with Trigonometry
• Let’s calculate the current I(t) assuming V(t)= A cos ωt

( )( ) ( ) cos

Use Trigonometric functions
( )Let ( ) cos( );   sin( )

cos( ) sin( ) cos
To solve for I and ,  use the identities:
cos( ) cos cos sin sin ;  sin(

dI tRI t L V t A t
dt

dI tI t I t I t
dt

RI t I L t A t

A B A B A B A



    

     


  

    

   

  

1

2 2 2

) sin cos cos sin
[cos cos sin sin ] [sin cos cos sin ] cos

sin[ sin ] cos 0 [sin ] cos tan tan ( )
cos

cos sin
cos sin (

( ) (

B A B A B
RI t t I L t t A t

L LRI I L R L
R R

A ARI I L A I R LR L R L
R L R

         
         


      
 



  
   

 
          

    
 

  2

2 2 2 2

2 2

1

2 2

)
)

( ) ( )
( )

( ) cos( tan ( ))    !!!!
( )

L
A AI

R L R L
R L

A LI t t MESSY
RR L

 







 
 



 



0

V(t) LI(t)

R

θ
R

-ωL
2 2( )R L
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Example Using ODE with Complex Exponentials

• Let’s calculate the current I(t) assuming      
V(t)= A cos ωt

RI (t)  L dI (t)
dt

V (t)  Acost

Use complex exponent functions
Let I (t)  I cos(t  )  e{Ie je jt};Let V (t)  Acos( t)  e{Ae j t};
dI (t)

dt
 j Ie je j t

RIe je jt  jLIe je j t  Ae jt

RIe j  jLIe j  A

Ie j 
A

R  jL


A

R2  (L)2
e
 j tan1L

R

I (t)  e{ A

R2  (L)2
e
 j tan1L

R e jt} A

R2  (L)2
cos(t  tan1L

R
)

0

V(t) LI(t)

R
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A Special Function – Unit Impulse Function

• The unit impulse function, δ(t), also known as the 
Dirac delta function, is defined as:
δ(t) = 0 for t ≠ 0;

= undefined for t = 0
and has the following special property:

(t)

0
-100 -50 -25 -1 0 1 25 50 100













1)(

)()()(

dtt

fdtttf




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Unit Impulse Function Continued

• A consequence of the delta function is that 
it can be  approximated by a narrow pulse 
as the width of the pulse approaches zero 
while the area under the curve = 1

otherwise. 0  ;2/2/for  /1)( lim
0




 ε t  -εt 


δ(t)

1-1

0.5

.5-.5

1

-.05  .05

10



BME 333 Biomedical Signals and Systems 
- J.Schesser

72

Unit Impulse Function Continued

f (t) (t  )dt






Let's approximate  (t  ) with a pulse of height 1


 and width   

f (t) (t  )dt




  f (t) 1


dt
  2

  2



If we take the limit of this integral as   0, 
the approximation integral approaches the original integral

f (t) (t  )dt




 
0

lim f (t) 1


dt
  2

  2

 
0

lim f ( ) 1

  f ( ),

 since as   0,  the integral is zero except at t  

τ τ
τ + ε/2τ - ε /2

 ε
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Unit Impulse Sequence

• The unit impulse only has a value at n=0.  
The notation used to represent the unit 
impulse is called the (Kronecker) delta 
function:

δ [n] = 1 for n=0, 0 elsewhere
• Therefore, shifted impulses are:

δ[n-2] = 1 for n=2, 0 elsewhere
δ[n-k] = 1 for n=k, 0 elsewhere



BME 333 Biomedical Signals and Systems 
- J.Schesser

74

Application of the Unit Impulse

• One may use the unit 
impulse to represent 
our first sequence as:

x [n ]

0

1

2

3

4

5

6

7

-4 -3 -2 -1 0 1 2 3 4 5 6 7

[ ] 2 [ ] 4 [ 1] 6 [ 2] 4 [ 3] 2 [ 4]x n n n n n n            
n -1 0 1 2 3 4 5

2 [n] 0 2 0 0 0 0 0
4 [n -1] 0 0 4 0 0 0 0
6 [n -2] 0 0 0 6 0 0 0
4 [n -3] 0 0 0 0 4 0 0
2 [n -4] 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0
x [n ] 0 2 4 6 4 2 0
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Unit Impulse Representation of a 
Sequence

• In fact, any sequence can be represented as sum of 
unit impulse functions.









]2[]2[]1[]1[
][]0[]1[]1[

][][][

nxnx
nxnx

knkxnx
k





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f (t) (t  )dt






Let's approximate  (t  ) with a pulse of height 1


 and width   

f (t) (t  )dt




  f (t) 1


dt
  2

  2



If we take the limit of this integral as   0, 
the approximation integral approaches the original integral

f (t) (t  )dt




 
0

lim f (t) 1


dt
  2

  2

 
0

lim f ( ) 1

  f ( ),

 since as   0,  the integral is zero except at t  
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Uses of Delta Function

• Modeling of electrical, mechanical, physical 
phenomenon: 
– point charge,
– impulsive force, 
– point mass
– point light
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Another Special Function – Unit Step 
Function

• The unit step function, u(t) is defined as:
u(t) = 1 for t ≥ 0;

= 0 for t < 0.
and is related to the delta function as 
follows:

 
t dtu  )()( 

1

t



BME 333 Biomedical Signals and Systems 
- J.Schesser

79

Integration of the Delta Function

• δ(t) u(t)
• u(t) tu(t) 1st order
• tu(t) 2nd order

.

.

.
• nth order

)(!2
2 tut

)(! tut
n
n



BME 333 Biomedical Signals and Systems 
- J.Schesser

80

Signal Representations using the Unit Step 
Function

• x(t) = e-σt cos(ωt)u(t)

• x(t) = t u(t) – 2 (t-1)u(t-1) + (t-2) u(t-2)

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
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x(t)
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-4

-2

0

2
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6
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tu(t)

-2(t-1)u(t-1)

(t-2)u(t-2)
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Homework
• Complex numbers

– Convert 1+j1 to its magnitude/angle representation (phasor)
– Convert 1/(1+j1) to a phasor
– Draw ejωt and ej(ωt+α) in the complex plane
– For the series R-L circuit in class, calculate the voltage across the 

inductor.
– Appendix A.4, A.7

• Unit Impulse and Unit Step Functions 
– Using unit step functions, construct a single pulse of magnitude 

10 starting at t=5 and ending at t=10.
– Repeat problem 1) with 2 pulses where the second is of 

magnitude 5 starting at t=15 and ending at t=25.
– Is the unit step function a bounded function?
– Is the unit impulse function a bounded function?
– 2CT.2.4a,b
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Systems

Lecture #3
1.3
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Representation of a System

• How do represent a system mathematically?  
– Since a system transforms a signal into another we write an equation: 

y(t)=T {x(t)}

– where T is an operator to symbolize a system,

– x(t) is the signal that goes into the system: input signal (or source)
– And y(t) is transformed signal or output signal (or solution of the 

equation)

• We can also represent it by a flow diagram

T y(t)x(t)
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Example of a Continuous-Time System

• A squarer system: y(t)={x(t)}2

– The output equals the square of the input.  
– This is the result of putting the sine wave into the squarer

• This is an example of a continuous-time system
• We might be able to build this using an electronic circuit
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1
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Input: x(t) Output: y(t) = {x(t)}2



Discrete-Time Systems

• If we put a discrete-time signal into a system the output 
may be a discrete-time signal

• This is called a Discrete-time system.

y[n]=T {x[n]}

• Using our squarer example: y[n]={x[n]}2
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Mixed Systems

• Continuous-to-Discrete systems

y[n]= T {x(t)}
– Example: a sampler: y[n]=x(nTs)

• This is also called a A-to-D converter

• Discrete-to-Continuous systems

y(t) = T {x[n]}
– Example: An D-to-A converter

• The opposite of a sampler
• Takes the samples a recreates the Continuous Signal
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An Example

• Example: A music CD

A-to-D 
Converter

Optical 
Disk  

Writer

Optical 
Disk 

Reader

D-to-A 
Converter

Stereo

RecorderMusic

Listener

x(t)

x[n]

CD x[n]

x(t)
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Some Basic Properties of Linear Systems

• If a system is Linear, or better yet Linear 
and Time Invariant (LTI), it is easier to 
analyze and understand than systems that 
are non-linear and/or vary with time.

• All LTI systems must be
– Linear and support superposition
– Causal
– Time Invariant
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Linearity for Continuous Signals
x1(t) y1(t)

LS
x2(t) y2(t)

LS
x3(t) = a1x1(t) y3(t) = a1y1(t)

LS

SCALAR

x3(t) = a1x1(t) + a2x2(t) y3(t) = a1y1(t) + a2y2(t)

SUPERPOSITION

LS

LS
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Shorthand

xk (t) yk (t)

ak xk (t)
k  ak yk (t)

k
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Same for Discrete Signals

xk[n] yk[n]

ak xk[n]
k  ak yk[n]

k
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Causality

• A system is causal if the output at any time 
depends only on the input values up to that time 

• y(to) does not depend on x(ti) that occur at times 
after to, ti > to.

• True for all real time physical systems
• Not true for system-processed recorded signals or 

spatial varying signal
– Such systems can look ahead or left, right, up & down
– E.g., a Morphing System



Causality

• Not Causal
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y(to)x(t)
y(t) x(ti)

to ti



Causality

• Causal
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y(to)x(t)
y(t)

x(ti)

toAllowable Values 
of ti
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Time Invariance

Continuous Signals
xk(t)        yk(t)

Delay x(t) by t0 yields same response only later
xk(t-t0)         yk(t-t0)

Discrete Signals
xk[n]        yk[n]

xk[n-n0]         yk[n-n0]
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A Non-LTI System
A multiplier which is a function of time

X
x (t) y (t)=g(t) x(t)

g(t)
Check Superposition: 

x1(t) yields y1(t)=g(t) x1(t)
x2(t) yields y2(t)=g(t) x2(t)

let x3(t)= a1 x1(t)+a2 x2(t) then
y3(t)=g(t) x3(t) = g(t) [a1 x1(t)+a2 x2(t)]

= a1y1(t)+a2y2(t)
OK

Check Time Invariance: 

x1(t)=x(t) yields y(t)=g(t) x(t)
x2(t) = x(t-) yields y2(t)=g(t) x2(t)

=g(t)x(t-)
But to be TI
x2(t)= x(t-) yields y2(t) = y(t-)

= g(t-) x(t-)
Not OK
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Another Non-LTI System
A system with an additive constant

y (t) = x(t) + K
Check Superposition: 

For Superposition to hold, we need to have:

let x (t) = a1x1(t)+a2 x2(t) then y (t) = a1x1(t)+a2 x2(t) + K
But for this system:
y (t) = y1(t)+y2(t) =  a1 x1(t)+K+ a2 x2(t) + K

Not OK
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How Does One Describe LTI Systems

• For Continuous Systems – By Using 
Ordinary Differential Equations (ODE) 

• For Discrete Systems – By Using 
Difference Equations
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1st Order Linear ODE: Simple Electrical 
Circuit

Vs

1 2 R

Li(t)

L
VsiL

R
dt
di

dt
tdiLRtiVs



 )()(
1st Order Linear ODE

Solve for i(t) assuming: i(t) = K1e-At + K2 with the initial condition that i(0)=0.  The 2 
terms are need due to the following:  Since the source Vs is a constant (battery), we 
assume that the output must a component which is a constant, K2.   Since the differential 
equation is requires that the output and its derivative be proportional to each other, we 
assume that the output must have a component which is proportional to an exponential 
function, K1e-At.

R = Resistance
L = Inductance
Vs = Voltage
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1st Order Linear ODE: Simple Electrical 
Circuit

L
VsK

L
R

eK
L
ReAK

L
VsK

L
ReK

L
ReAK

L
VsKeK

L
ReAK

eAK
dt
di

KeKti
L

Vsi
L
R

dt
di

dt
tdiLRtiVs

AtAt

AtAt

AtAt

At

At



























2

11

211

211

1

21

0

implies This

have  weResorting

)(0

0

equals ,derivativefirst   that theNote
get  weequation, in the )( ngSubstituti

)()(

)1()(

0)0(

0)0( that statescondition  initial But the

)(

Therefore,

;

;0

0

1

1

0

1

1

22

11

t
L
R

L
R

t
L
R

AtAt

e
R

Vsti

R
VsK

R
VsK

R
VseKi

i
R

VseKti

R
VsK

L
VsK

L
R

L
RA

L
RA

eK
L
ReAK
























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Another 1st Order LODE : Drug 
Concentration in Blood Being Removed by 

the Liver

C

D
L V

RDKD 


Where KL = drug loss rate

Vc = Volume of circulatory system in liters

RD is the rate of drug input (g/min)

In a similar way as in the RL circuit, we can solve this for

)1()( tLK

LC

D eKV
RtD 


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2nd Order LODE

M F
B

K M = Mass
B = Friction
K = Spring constant

)(tFKxxBxM  

C

R

L
i(t) 01 


i

C
iRiL

R = Resistance
L = Inductance
C = Capacitance

x(t)
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Homework
• Linear Systems 

– Is y(t)=x(t)2 a linear system?  Prove your 
point.

– Is y(t)=t2 a linear system?  Prove your point.
– CT.1.3.1 

• ODE
– Solve and plot the solution to the equation: 

dx/dt + 6 x = 0; x(0) = 5; use Matlab to obtain 
the plot

– Solve and plot the solution to the equation : 
dx/dt + 6 x = 6 ; x(0) = 0 ; use Matlab to 
obtain the plot
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LTI ODE Continued

Lecture #4
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Introduction of the p Operator

Let's start with this 2nd order differential equation
to represent some system.

a d 2 y(t)
dt2  b dy(t)

dt
 cy(t)  e dx(t)

dt
 fx(t)

where x(t) is the input or source, 
y(t) is the solution or the response of the differential equation,

and a,  b,  c,  d ,  f  are the coefficeints.
Let's define the p operators:

p  d
dt

, p2 
d 2

dt 2 ,..., pn 
d n

dtn

and rewrite the differential equation as
ap2 y(t)  bpy(t)  cy(t)  epx(t)  fx(t)
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Introduction of the p Operator

And now for some mathematical blasphemy!!!
ap2 y(t)  bpy(t)  cy(t)  epx(t)  fx(t)

[ap2  bp  c]y(t)  [ep  f ]x(t)

y(t)  ep  f
ap2  bp  c

x(t)

This is not a solution for y(t) but a way of reducing an equation
into a simpler form.
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Introduction of the p Operator

This is not a solution for y(t) but a way of reducing an equation
into a simpler form.

Note that [ap2  bp  c] and [ep  f ]
 are polynomials in p and we can rewrite these 

polynomials as [ap2  bp  c] = A( p) and 
[ep  f ] = B( p) and we get

A( p) y(t)  B( p)x(t)

y(t)  B( p)
A( p)

x(t)
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Components of the Solution of LODE 
A( p) y(t)  B( p)x(t)

Let's define y(t) which is 
the total response of the system

y(t)  ys (t)  ysf (t)

where  ys (t) is called the response due to the source 
and is the solution to this

A( p) ys (t)  B( p)x(t)
and  ysf (t) is called the source free response or the transient response.

and is the soltuion to this equation
A( p) ysf (t)  0

We can now use suposition, solve two simpler equations,
and add them up to get the total solution.
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Components of the Solution of LODE
Source Response 

• ys(t) - Source Response has the same 
form as the source and is a solution of:

A(p)ys(t)=B(p)x(t)
• If x(t) is a constant then ys(t) is a 

constant, if x(t) is a polynomial then 
ys(t) is a polynomial, if x(t) is a 
sinusoid then ys(t) is a sinusoid, etc.
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Components of the Solution of LODE
Source-Free Response

• ysf (t) - Source-free Response is also called the Natural 
Mode Response, Transient Response, Homogeneous, or 
Characteristic Response and is a solution of 

A(p)ysf (t)=0 Homogeneous Equation
A(p)=0 Characteristic Equation 

• Functions which satisfy the Homogeneous Equation are 
called eigenfunctions (e.g., Keat)

• The values of p which are solutions to the Characteristic 
Equation are called eigenvalues.
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Components of the Solution of LODE
Source-Free Response

Stability 
• The source-free response is independent of the source and 

always appears. It is a function of the system under 
examination.

• It determines the stability of the system. 
• For a stable system, 

1. it is expected that the source-free response is also know as the 
transient response since it is expected that this component will 
effectively “end”.

2. When the source-free response ends, the response due to the 
source or steady state remains.

• For an unstable system, the source-free response may 
never end.
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Components of the Solution of LODE: 
Source Response

Source Response:i
s
(t)

Since the source is a constant, Vs, then source response is a constant
i
s
(t)K

di
s
(t)

dt  R
Li

s
(t)Vs

L

Substituting i
s
(t) into the differential equation, we have

K Vs
R

i
s
(t)Vs

R

Let us look back at the RL circuit 1st Order ODE: Vs i(t)RLdi(t)
dt
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Components of the Solution of LODE:
Source Free Response: Using the 

Homogenous Equation
Source Free Response: i

sf
(t)

The Homogenous equation: Ldi(t)
dt i(t)R0

Solutions of the Homogenous equation (the eigenfunctions for a 1st  order ODE) are
i
sf

(t) Aeat

Substituting i
sf

(t) into the homogenous equation, we have 

di
sf

(t)
dt aAeat

aAeat  R
L Aeat 0

aR
L

i
sf

(t)Ke
R
L

t
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Components of the Solution of LODE:
Source Free Response: Using the 

Characteristic Equation

Source Free Response: i
sf

(t)

Note that the solution of the Characteristic equation (the eigenvalue) is

(p R
L)0

pR
L

and, therefore, same solution: i
sf

(t) Ae
R
L

t
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Components of the Solution of LODE: Total 
Solution

i(t)  is (t)  isf (t)


Vs
R
 Ae


R
L

t

Then the total response is:

The constant A can be found from initial conditions of i(t)
0

(0)

(0)

( ) ( (0) )

R
L

Rt
L

Vs Vsi Ae A
R R

VsA i
R

Vs Vsi t i e
R R





   

 

  
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Components of the Solution of LODE

( ) ( (0) )

( )

(1 )

Rt
L

Rt
L

Rt
L

Vs Vsi t i e
R R

Vs Vsi t e
R R

Vs e
R







  

 

 

In our problem i(0) = 0 :
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Free Response of a 2nd ODE
Solutions of the Characteristic Equation

02  cbpap

Let p1,p2 be the roots of the characteristic equation, then

a
acbbp

2
42

2,1


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The 4 Free Response Cases of a 2nd ODE
Solutions of the Homogeneous Equation

Case Roots Solution Type 
 
 
b2  4ac  0  

 

p1,2 
b  b2  4ac

2a
 

 
Real, 
Unequal, 
Negative 

ysf (t) C1e
p1t C2e

p2t

where C1  and C2  are real
 

 
 

Overdamped 
Stable 

b2  4ac  0
 p1,2  p  b

2a
 

Real, 
Equal, 
Negative 

ysf (t)  (C1t C2 )e pt

where C1  and C2  are real
 

 
 

Critically damped 
Stable 

b2  4ac  0  
 p1,2 

b  j 4ac  b2

2a
  j

 

Complex 
conjugates, 
Unequal 

ysf (t)  et (C1e
jt C2e

 jt ) 

where p1,2    j

C2 C1*;C1 Ce j

are complex conjugates
ysf (t)  etC(e j ( t )  e j (t ) )

 e t 2C cos(t  )
 

 
 
 

Underdamped 
Stable 

b2  4ac  0
& b  0

 p1,2   j 4ac
2a

  j  
Imaginary ysf (t) C 1e j t C 2 e j t

 2C cos(t  )
where p1,2   j

& C 2C 1*;C 1Ce j

 

 
Undamped or 
Oscillatory 
Unstable 
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Solutions to the Source Free Response of 2nd

Order ODE

Overdamped

Critically Damped

Underdamped

Undamped

ysf (t) C1e
p1t C2e

p2t ; note that p1 and p2  are negative

ysf (t)  (C1t C2 )e  pt ; note that p is negative

ysf (t) C 1e
j t C 2 e j t  2C cos(t  );where p1,2   j ; C 2C 1*;C 1Ce j

ysf (t) C1e
p1t C2e

p2t  e t (C1e
j t C2e

 j t ) where p1,2    j

but we can show that
C2 C1*;  and assuming

C1  a  jb Ce j ;  then C2  a  jb Ce j

ysf (t)  e t (Ce je j t Ce je j t )  e t (Ce j (t ) Ce j ( t ) )

 e tC(e j (t )  e j (t ) )  e t 2C cos( t  )
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Source Free Responses of 2nd Order ODE
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Proof of the Complex Conjugate Constants
Underdamped Case
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Complex Plane
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Complete Response of 2nd Order ODE
An Example

y


 4 y


 3y  4e2t ; y(0)  2; y


(0)  4 System with initial conditions
p2  4 p  3  0 Characteristic Equation
p1,2  3,1 Eigenvalues - Overdamped

ysf (t)  A1e
3t  A2e

 t  Eigenfunctions and source free response

ys (t)  A3e
2t  Source free response

y(t)  A1e
3t  A2e

t  A3e
2t  Total response

y


(t)  3A1e
3t  A2e

t  2A3e
2t

y


(t)  9A1e
3t  A2e

t  4A3e
2t
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Complete Response of 2nd Order ODE
Solution

Substitute the solution, the first and second derivatives into the system
(9A1e

3t  A2e
t  4A3e

2t )  4(3A1e
3t  A2e

 t  2A3e
2t )  3(A1e

3t  A2e
 t  A3e

2t )  4e2t

Resort the equation into like terms
(9 12 3)A1e

3t  (1 4  3)A2e
 t  (4 8 3)A3e

2t  4e2t

Notice that the coefficents of the eigenfunctions are zero since they must satisfy the Homogeneous Equation. 
What is left is the source term, the response due to the sources:
(0)A1e

3t  (0)A2e
 t  A3e

2t  4e2t

From this A3  is determined:

A3e
2t  4e2t  A3  4

Using the initial conditions of the response and the first derivative, A1  and A2  are determined.
y(0)  A1  A2  4  2 A1  A2  6

y


(0)  3A1  A2  8  43A1  A2  4
2A1  2 A1  1; A2  7
The total solution is:
 y(t)  e3t  7e t  43e2t
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p2 y(t)  b
a

py(t)  c
a

y(t)  1
a

x(t)

p2 y(t)  2o py(t) o
2 y(t)  Kx(t) 1

Source response is ys (t)  A 
1
o

2

For  1,  critically damped, p1,2  o

Source free response is ysf (t)  (C1t C2 )eot

y(t)  1
o

2  (C1t C2 )eot

y(0)  0  1
o

2 C2

C2  
1
o

2

y(0)  0 C1 oC2

C1  y(0) oC2  y(0)  1
o

y(t)  1
o

2  ([ y(0)  1
o

]t  1
o

2 )eot
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

p2 y(t) b
a

py(t) c
a

y(t)  1
a

x(t)

p2 y(t) 2 o py(t) o
2 y(t)  Kx(t)  1

Source response is ys(t)  A 
1
 o

2

For  1, underdamped, p1,2   o  j o 1 2

Source free response is ysf (t)  eotC cos( o 1 2 t  )

y(t)  1
 o

2  eotC cos( o 1 2 t  )

y(0)  0  1
 o

2 C cos( );C cos( )   1
 o

2

y(0)  0  oC cos( ) o 1 2C sin( )   o

1
 o

2  o 1 2C sin( );C sin( )  
y(0) 

 o

 o 1 2

  tan1(
y(0) o 

1 2
);C  

1

 o
2 cos(tan1(

y(0) o 

1 2
))

y(t)  1
 o

2  eot 1

 o
2 cos(tan1(

y(0) o 

1 2
))

cos( o 1 2 t  tan1(
y(0) o 

1 2
))
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

p2 y(t) b
a

py(t) c
a

y(t)  1
a

x(t)

p2 y(t) 2 o py(t) o
2 y(t)  Kx(t)  1

Source response is ys(t)  A 
1
 o

2

For   0, undamped, p1,2   j o

Source free response is ysf (t)  C cos( ot  )

y(t)  1
 o

2 C cos( ot  )

y(0)  0  1
 o

2 C cos( );C cos( )   1
 o

2

y(0)  0 oC sin( );C sin( )  
y(0)
 o

  tan1( y(0) o );C  
1

 o
2 cos(tan1( y(0) o ))

y(t)  1
 o

2 
1

 o
2 cos(tan1( y(0) o ))

cos( ot  tan1( y(0) o ))
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Poles and Zeroes
• Source Response:

H(p) is known as the system function or network response

• We can think of the solutions of B(p) = 0 as the zeroes of the system 
• We can think of the solutions of A(p) = 0 as the poles of the system

( ) ( ) ( ) ( )
( )( ) ( )( )

( ) ( ) ( )
( )( ) ( )

A p y t B p x t
B py t x tA p

y t H p x t
B pH p A p








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Poles and Zeros Continued

• If we assume that the source x(t) has the form x(t)=est where s is a 
complex number, we can plot the poles and zeroes in the complex plane to 
graphically see the response to a particular source function.  Note that H(s)
is a complex number with magnitude and angle.

s1

s2

s = source

s1

s2

s=source
))((

)(

 thenpoles, 2 and zeroes no have  if example,For 

 since

)(
)()()()(

21 ssss
AsH

H(p)

see
dt
dpe

esH
epHtxpHty

ststst

st

st








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Homework
• 2st Order ODEs 

1. Using Matlab, plot the response for following systems.  Identity what 
type of system each is.  Submit your code:

2. 2.2 An LTI system is described by the second-order ODE:

a. Use the p operator notation to find the roots of the characteristic equation.
b. Assume y(0)=0, dy(0)/dt=9 and x(t)=0, find y(t).
c. Now Let x(t) = 10 and same initial conditions, find y(t).

)(107 txyyy  
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Homework
3. A quadratic low-pass filter is described by the second-

order ODE:

a. The characteristic equation for this ODE in terms of the 
p operator has complex conjugate roots.  Find an 
algebraic expression for the position of the roots.

b. Let x(t)=1. Find the steady-state output.
c. Let x(t)=0, y(0)=0 and dy(0)/dt=10, Find and sketch y(t) 

for ξ =.5 and ωn=1

)()2( 2 txyyy nn   
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Homework

4. An alternate way of writing the ODE for an 
underdamped system is 

Let a=.5 and b=.86603.  Repeat a, b, and c in problem 2.

)()(2 22 txyabyay  
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Homework

5. BioSignals
– An heart signal is sampled at the rate 250 s/s 

and is passed to EKG which has an input 
consisting of a low pass filter.  The filter is a 
resistor and capacitor in series where the 
output of the filter is taken across the 
capacitor.  What should be the value of the 
Capacitor if the Resistor is 1k ohms and the 
time constant of the filter so that the transient 
response is completed within 1/10 of the 
sample time? What is the cutoff frequency of 
this filter?
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Homework
6. Respiration may be modeled with the following second 

order equation, where y(t) is the respiration signal and 
x(t) is the additional load above the resting respiration on 
the body:

a. Calculate the resting respiration rate.  Assume y(0)=0 
and dy(0)/dt=ωn.

b. Calculate the respiration rate when x(t)=cos(ωnt).  
Assume the same initial conditions as part a.

c. Use Matlab to graph the signals for both parts.  Assume 
ωn=2π.

y n
2y  x(t)
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p2 y(t)  b
a

py(t)  c
a

y(t)  1
a

x(t)

p2 y(t)  2o py(t) o
2 y(t)  Kx(t) 1

Source response is ys (t)  A 
1
o

2

For  1,  overdamped, p1,2  (   2 1)o

Source free response is ysf (t) C1e
(  21)ot C2e

(  21)ot

y(t)  1
o

2 C1e
( 21)ot C2e

(  21)ot

y(0)  0  1
o

2 C1 C2;C1  ( 1
o

2 C2 )

y(0)  0  (   2 1)oC1  (   2 1)oC2

y(0)  (   2 1)o[(
1
o

2 C2 )] (   2 1)oC2

y(0)  (   2 1)o ( 1
o

2 )  (   2 1)oC2  (   2 1)oC2

y(0)  (   2 1)o ( 1
o

2 )  [(   2 1)o  (   2 1)o ]C2

y(0)  (   2 1)o ( 1
o

2 )  2o  2 1C2

C2 
y(0)o  (   2 1)

2o
2  2 1

;C1  (
   2 1 y(0)o

2o
2  2 1

)

y(t)  1
 2 

 y(0)o    2 1

2 2  2 1
e(  21)ot 

y(0)o    2 1

2 2  2 1
e(  21)ot
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Proof of the Underdamped Case
• With C1 and C2 are complex conjugates, the proof is 

concluded:

1 2

1 2 1 2

1

1 2 1 1

1 2 1 1

1-1 -1

( ) ( )

[( ) cos ( )sin ]

If ,  then 

2

2

( ) [(2 )cos ( 2 )sin ] [(2 )cos (2 )sin ]

2Define tan ( ) tan (
2

t j t j t

t

j

t t

y t e C e C e

e C C t j C C t

C a jb Ce

C C C C a

C C C C j b

y t e a t j j b t e a t b t
C Cb

a

  





 

 

   



 







 

 

   

  

   

   

   


  2

1 2

2 2 2 2

2 2

)

( ) [ (2 ) (2 ) (cos cos sin sin )] [ (2 ) (2 ) cos( )]

[2 ( ) ( ) cos( )] [2 cos( )]

t t

t t

C C

y t e a b t t e a b t

e a b t e C t

 

 

     

   

 

 



     

    



2a

2b

2 2(2 ) (2 )a b

Im

Re
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Another version of the Underdamped Case

• With C1 and C2 are complex conjugates:
y(t)  e t (C1e

j t  C2e
 j t )  e t (C1e

j t  C1
e j t )

 e t (C1e
j t  [C1e

j t ])
 e t (2 Re{C1e

j t })

Assume C1  a  jb  Ce j ;where C  a2  b2 ;    tan-1 b
a

y(t)  e t (2Re{C1e
j t })  e t (2Re{Ce je j t })  e t (2 Re{Cej t})

 e t 2C cos(t )
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Continuous and Discrete Time Signals

x(t)  sin(t)

1 2( ) [ ]  sin ( ) for sx nT x n nT N n N   

Continuous Signal

Discrete Signal
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Phase shift and Time Shift
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Time shift = 0.00625 s

Phase shift = π / 2 radians

( ) cos(2 40 )
2

40 ;
1 0.025 sec
40

phase shift:

2
time shift:

12 0.00625 sec 
2 40 160

( ) cos(2 40( 0.00625))

s

x t t

f Hz

T

t

x t t










 



 

 


   

 


