Systems

Lecture \#3

1.3

- J.Schesser

Representation of a System

- How do represent a system mathematically?
- Since a system transforms a signal into another we write an equation:

$$
y(t)=\mathscr{T}\{x(t)\}
$$

- where \mathscr{T} is an operator to symbolize a system,
- $x(t)$ is the signal that goes into the system: input signal (or source)
- And $y(t)$ is transformed signal or output signal (or solution of the equation)
- We can also represent it by a flow diagram

Example of a Continuous-Time System

- A squarer system: $y(t)=\{x(t)\}^{2}$
- The output equals the square of the input.
- This is the result of putting the sine wave into the squarer

- This is an example of a continuous-time system
- We might be able to build this using an electronic circuit

Discrete-Time Systems

- If we put a discrete-time signal into a system the output may be a discrete-time signal
- This is called a Discrete-time system.

$$
y[n]=\mathscr{T}\{x[n]\}
$$

- Using our squarer example: $y[n]=\{x[n]\}^{2}$

BME 333 Biomedical Signals and Systems

Mixed Systems

- Continuous-to-Discrete systems

$$
y[n]=\mathcal{T}\{x(t)\}
$$

- Example: a sampler: $y[n]=x\left(n T_{s}\right)$
- This is also called a A-to-D converter
- Discrete-to-Continuous systems

$$
y(t)=\mathcal{T}\{x[n]\}
$$

- Example: An D-to-A converter
- The opposite of a sampler
- Takes the samples a recreates the Continuous Signal

An Example

- Example: A music CD

BME 310 Biomedical Computing -

Some Basic Properties of Linear Systems

- If a system is Linear, or better yet Linear and Time Invariant (LTI), it is easier to analyze and understand than systems that are non-linear and/or vary with time.
- All LTI systems must be
- Linear and support superposition
- Causal
- Time Invariant

Linearity for Continuous Signals

SUPERPOSITION

Shorthand

$$
\begin{aligned}
x_{k}(t) & \rightarrow y_{k}(t) \\
\sum_{k} a_{k} x_{k}(t) & \rightarrow \sum_{k} a_{k} y_{k}(t)
\end{aligned}
$$

Same for Discrete Signals

$$
\begin{aligned}
x_{k}[n] & \rightarrow y_{k}[n] \\
\sum_{k} a_{k} x_{k}[n] & \rightarrow \sum_{k} a_{k} y_{k}[n]
\end{aligned}
$$

Causality

- A system is causal if the output at any time depends only on the input values up to that time
- $y\left(t_{o}\right)$ does not depend on $x\left(t_{i}\right)$ that occur at times after $t_{o}, t_{i}>t_{0}$.
- True for all real time physical systems
- Not true for system-processed recorded signals or spatial varying signal
- Such systems can look ahead or left, right, up \& down
- E.g., a Morphing System

Causality

- Not Causal

Causality

- Causal

Time Invariance

Continuous Signals

$$
x_{k}(t) \longrightarrow y_{k}(t)
$$

Delay $x(t)$ by t_{0} yields same response only later

$$
x_{k}\left(t-t_{0}\right) \longrightarrow y_{k}\left(t-t_{0}\right)
$$

Discrete Signals

$$
\begin{gathered}
x_{k}[n] \longrightarrow y_{k}[n] \\
x_{k}\left[n-n_{0}\right]
\end{gathered} y_{k}\left[n-n_{0}\right] .
$$

A Non-LTI System

A multiplier which is a function of time

Check Superposition:

$$
\begin{aligned}
& x_{1}(t) \text { yields } y_{l}(t)=g(t) x_{l}(t) \\
& x_{2}(t) \text { yields } y_{2}(t)=g(t) x_{2}(t)
\end{aligned}
$$

$$
\text { let } x_{3}(t)=a_{1} x_{1}(t)+a_{2} x_{2}(t) \text { then }
$$

$$
y_{3}(t)=g(t) x_{3}(t)=g(t)\left[a_{1} x_{1}(t)+a_{2} x_{2}(t)\right]
$$

$$
=a_{1} y_{l}(t)+a_{2} y_{2}(t)
$$

OK

Check Time Invariance:

$$
\begin{aligned}
x_{1}(t)=x(t) \text { yields } y(t) & =g(t) x(t) \\
x_{2}(t)=x(t-t) \text { yields } y_{2}(t) & =g(t) x_{2}(t) \\
& =g(t) x(t-t)
\end{aligned}
$$

But to be TI

$$
\begin{aligned}
x_{2}(t)=x(t-t) \text { yields } y_{2}(t) & =y(t-t) \\
& =g(t-t) x(t-t)
\end{aligned}
$$

Not OK

Another Non-LTI System

A system with an additive constant

$$
y(t)=x(t)+K
$$

Check Superposition:
For Superposition to hold, we need to have:

$$
\text { let } x(t)=a_{1} x_{1}(t)+a_{2} x_{2}(t) \text { then } y(t)=a_{1} x_{1}(t)+a_{2} x_{2}(t)+K
$$

But for this system:
$y(t)=y_{l}(t)+y_{2}(t)=a_{1} x_{1}(t)+K+a_{2} x_{2}(t)+K$

Not OK

How Does One Describe LTI Systems

- For Continuous Systems - By Using Ordinary Differential Equations (ODE)
- For Discrete Systems - By Using Difference Equations

$1^{\text {st }}$ Order Linear ODE: Simple Electrical

Circuit

Solve for $\mathrm{i}(\mathrm{t})$ assuming: $i(t)=K_{l} e^{-A t}+K_{2}$ with the initial condition that $\mathrm{i}(0)=0$. The 2 terms are need due to the following: Since the source Vs is a constant (battery), we assume that the output must a component which is a constant, K_{2}. Since the differential equation is requires that the output and its derivative be proportional to each other, we assume that the output must have a component which is proportional to an exponential function, $K_{l} e^{-4 t}$.

$1^{\text {st }}$ Order Linear ODE: Simple Electrical

Circuit

$V s=i(t) R+L \frac{d i(t)}{d t}$
$\frac{d i}{d t}+\frac{R}{L} i=\frac{V s}{L}$

$$
\begin{aligned}
& -A K_{1} e^{-A t}+\frac{R}{L} K_{1} e^{-A t}=0 \\
& -A+\frac{R}{L}=0 ; A=\frac{R}{L}
\end{aligned}
$$

Substituting $i(t)=K_{1} e^{-A t}+K_{2}$ in the equation, we get
Note that the first derivative, equals
$\frac{d i}{d t}=-A K_{1} e^{-A t}+0$
$-A K_{1} e^{-A t}+0+\frac{R}{L}\left(K_{1} e^{-A t}+K_{2}\right)=\frac{V s}{L}$
Resorting we have
$-A K_{1} e^{-A t}+\frac{R}{L} K_{1} e^{-A t}+\frac{R}{L} K_{2}=\frac{V s}{L}$
This implies
$-A K_{1} e^{-A t}+\frac{R}{L} K_{1} e^{-A t}=0$
$\frac{R}{L} K_{2}=\frac{V S}{L}$

$$
\frac{R}{L} K_{2}=\frac{V s}{L} ; K_{2}=\frac{V s}{R}
$$

Therefore,

$$
i(t)=K_{1} e^{-\frac{R}{L} t}+\frac{V s}{R}
$$

But the initial condition states that $i(0)=0$

$$
\begin{aligned}
& i(0)=K_{1} e^{-\frac{R}{L} 0}+\frac{V s}{R}=K_{1}+\frac{V S}{R}=0 \\
& K_{1}=-\frac{V s}{R} \\
& i(t)=\frac{V s}{R}\left(1-e^{-\frac{R}{L} t}\right)
\end{aligned}
$$

$1^{\text {st }}$ Order Linear ODE: Simple Electrical

 Circuit
$i(t)=\frac{V s}{R}\left(1-e^{-\frac{R}{L} t}\right)=\frac{V s}{R}\left(1-e^{-\frac{t}{L / R}}\right)$
$\frac{L}{R}$ is called the time constant and we see that within 3 time constants 95% of its final value is reached.

Another $1^{\text {st }}$ Order LODE : Drug Concentration in Blood Being Removed by the Liver

Where $\mathrm{K}_{\mathrm{L}}=$ drug loss rate

$$
\dot{D}+K_{L} D=\frac{R_{D}}{V_{C}}
$$

$\mathrm{Vc}=$ Volume of circulatory system in liters
R_{D} is the rate of drug input ($\mathrm{mg} / \mathrm{min}$)
In a similar way as in the RL circuit, we can solve this for

$$
D(t)=\frac{R_{D}}{V_{C} K_{L}}\left(1-e^{-K_{L} t}\right)
$$

$2^{\text {nd }}$ Order LODE

$L \ddot{i}+R \dot{i}+\frac{1}{C} i=0 \quad \begin{aligned} & \mathrm{R}=\text { Resistance } \\ & \mathrm{L}=\text { Inductance } \\ & \mathrm{C}=\text { Capacitance }\end{aligned}$

Homework

- Linear Systems
- Is $y(t)=x(t)^{2}$ a linear system? Prove your point.
- Is $y(t)=t^{2}$ a linear system? Prove your point.
- CT.1.3.1
- ODE
- Solve and plot the solution to the equation: $d x / d t+6 x=0 ; x(0)=5$; use Matlab to obtain the plot
- Solve and plot the solution to the equation : $d x / d t+6 x=6 ; x(0)=0$; use Matlab to obtain the plot

