LTI ODE Continued

Lecture \#4

Introduction of the p Operator

Let's start with this 2nd order differential equation to represent some system.

$$
\begin{aligned}
& a \frac{d^{2} y(t)}{d t^{2}}+b \frac{d y(t)}{d t}+c y(t)=e \frac{d x(t)}{d t}+f x(t) \\
& \text { where } x(t) \text { is the input or source, }
\end{aligned}
$$

$y(t)$ is the solution or the response of the differential equation, and a, b, c, d, f are the coefficeints.

Let's define the p operators:

$$
p \cong \frac{d}{d t}, p^{2} \cong \frac{d^{2}}{d t^{2}}, \ldots, p^{n} \cong \frac{d^{n}}{d t^{n}}
$$

and rewrite the differential equation as

$$
a p^{2} y(t)+b p y(t)+c y(t)=e p x(t)+f x(t)
$$

Introduction of the p Operator

And now for some mathematical blasphemy!!!

$$
\begin{gathered}
a p^{2} y(t)+b p y(t)+c y(t)=e p x(t)+f x(t) \\
{\left[a p^{2}+b p+c\right] y(t)=[e p+f] x(t)} \\
y(t)=\frac{e p+f}{a p^{2}+b p+c} x(t)
\end{gathered}
$$

This is not a solution for $y(t)$ but a way of reducing an equation into a simpler form.

Introduction of the p Operator

Note that $\left[a p^{2}+b p+c\right]$ and $[e p+f]$ are polynomials in p and we can rewrite these polynomials as $\left[a p^{2}+b p+c\right]=A(p)$ and

$$
\begin{gathered}
{[e p+f]=B(p) \text { and we get }} \\
A(p) y(t)=B(p) x(t) \\
y(t)=\frac{B(p)}{A(p)} x(t)
\end{gathered}
$$

This is not a solution for $\mathrm{y}(\mathrm{t})$ but a way of reducing an equation into a simpler form.

Components of the Solution of LODE

$$
A(p) y(t)=B(p) x(t)
$$

Let's define $y(t)$ which is the total response of the system

$$
y(t)=y_{s}(t)+y_{s f}(t)
$$

where $y_{s}(t)$ is called the response due to the source
and is the solution to this

$$
A(p) y_{s}(t)=B(p) x(t)
$$

and $y_{s f}(t)$ is called the source free response or the transient response.
and is the soltuion to this equation

$$
A(p) y_{s f}(t)=0
$$

We can now use suposition, solve two simpler equations, and add them up to get the total solution.

Components of the Solution of LODE Source Response

- $y_{s}(t)$ - Source Response has the same form as the source and is a solution of:

$$
A(p) y_{s}(t)=B(p) x(t)
$$

- If $x(t)$ is a constant then $y_{s}(t)$ is a constant, if $x(t)$ is a polynomial then $y_{s}(t)$ is a polynomial, if $x(t)$ is a sinusoid then $y_{s}(t)$ is a sinusoid, etc.

Components of the Solution of LODE Source-Free Response

- $y_{s f}(t)$ - Source-free Response is also called the Natural Mode Response, Transient Response, Homogeneous, or Characteristic Response and is a solution of

$$
\begin{gathered}
A(p) y_{s f}(t)=0 \text { Homogeneous Equation } \\
A(p)=0 \text { Characteristic Equation }
\end{gathered}
$$

- Functions which satisfy the Homogeneous Equation are called eigenfunctions (e.g., Ke ${ }^{a t}$)
- The values of p which are solutions to the Characteristic Equation are called eigenvalues.

Components of the Solution of LODE Source-Free Response
 Stability

- The source-free response is independent of the source and always appears. It is a function of the system under examination.
- It determines the stability of the system.
- For a stable system,

1. it is expected that the source-free response is also know as the transient response since it is expected that this component will effectively "end".
2. When the source-free response ends, the response due to the source or steady state remains.

- For an unstable system, the source-free response may never end.

Components of the Solution of LODE: Source Response

Let us look back at the RL circuit $1^{\text {st }}$ Order ODE: $\quad V s=i(t) R+L \frac{d i(t)}{d t}$

$$
\text { Source Response: } i_{s}(t)
$$

Since the source is a constant, $V S$, then source response is a constant

$$
\begin{gathered}
i_{s}(t)=K \\
\frac{d i_{s}(t)}{d t}+\frac{R}{L} i_{s}(t)=\frac{V s}{L}
\end{gathered}
$$

Substituting $i_{s}(t)$ into the differential equation, we have

$$
\begin{gathered}
K=\frac{V S}{R} \\
i_{s}(t)=\frac{V S}{R}
\end{gathered}
$$

Components of the Solution of LODE: Source Free Response: Using the Homogenous Equation

Source Free Response: $i_{s f}(t)$
The Homogenous equation: $L \frac{d i(t)}{d t}+i(t) R=0$
Solutions of the Homogenous equation (the eigenfunctions for a $1^{\text {tt }}$ order ODE) are

$$
i_{s f}(t)=A e^{a t}
$$

Substituting $i_{s f}(t)$ into the homogenous equation, we have

$$
\begin{gathered}
\frac{d i_{s f}(t)}{d t}=a A e^{a t} \\
a A e^{a t}+\frac{R}{L} A e^{a t}=0 \\
a=-\frac{R}{L} \\
\therefore i_{s f}(t)=K e^{-\frac{R}{L} t}
\end{gathered}
$$

Components of the Solution of LODE: Source Free Response: Using the Characteristic Equation

Source Free Response: $i_{s f}(t)$
Note that the solution of the Characteristic equation (the eigenvalue) is

$$
\begin{gathered}
\left(p+\frac{R}{L}\right)=0 \\
p=-\frac{R}{L}
\end{gathered}
$$

and, therefore, same solution: $i_{s f}(t)=A e^{-\frac{R}{L} t}$

Components of the Solution of LODE: Total Solution

Then the total response is:

$$
\begin{aligned}
i(t) & =i_{s}(t)+i_{s f}(t) \\
& =\frac{V S}{R}+A e^{-\frac{R}{L} t}
\end{aligned}
$$

The constant A can be found from initial conditions of $i(t)$

$$
\begin{aligned}
& i(0)=\frac{V S}{R}+A e^{-\frac{R}{L} 0}=\frac{V S}{R}+A \\
& A=i(0)-\frac{V S}{R} \\
& i(t)=\frac{V S}{R}+\left(i(0)-\frac{V S}{R}\right) e^{-\frac{R}{L} t}
\end{aligned}
$$

Components of the Solution of LODE

In our problem $i(0)=0$:

$$
\begin{aligned}
i(t) & =\frac{V S}{R}+\left(i(0)-\frac{V S}{R}\right) e^{-\frac{R}{L} t} \\
i(t) & =\frac{V S}{R}-\frac{V S}{R} e^{-\frac{R}{L} t} \\
& =\frac{V S}{R}\left(1-e^{-\frac{R}{L} t}\right)
\end{aligned}
$$

Free Response of a $2^{\text {nd }}$ ODE Solutions of the Characteristic Equation

$$
a p^{2}+b p+c=0
$$

Let p_{1}, p_{2} be the roots of the characteristic equation, then

$$
p_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The 4 Free Response Cases of a $2^{\text {nd }} O D E$ Solutions of the Homogeneous Equation

Case	Roots		Solution	Type
$b^{2}-4 a c>0$	$p_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	Real, Unequal, Negative	$y_{s f}(t)=C_{1} e^{p_{1} t}+C_{2} e^{p_{2} t}$ where C_{1} and C_{2} are real	Overdamped Stable
$b^{2}-4 a c=0$	$p_{1,2}=p=\frac{-b}{2 a}$	Real, Equal, Negative	$y_{s f}(t)=\left(C_{1} t+C_{2}\right) e^{p t}$ where C_{1} and C_{2} are real	Critically damped Stable
$b^{2}-4 a c<0$	$\begin{aligned} \boldsymbol{p}_{1,2} & =\frac{-b \pm j \sqrt{4 a c-b^{2}}}{2 a} \\ & =\alpha \pm j \omega \end{aligned}$	Complex conjugates, Unequal	$y_{s f}(t)=e^{-\alpha t}\left(C_{1} e^{j \omega t}+C_{2} e^{-j \omega t}\right)$ where $p_{1,2}=-\alpha \pm j \omega$ $C_{2}=C_{1}^{*} ; C_{1}=C e^{j \theta}$ are complex conjugates $\begin{aligned} & y_{s f}(t)=e^{-\alpha t} C\left(e^{j(\omega t+\theta)}+e^{-j(\omega t+\theta)}\right) \\ & =e^{-\alpha t} 2 C \cos (\omega t+\theta) \end{aligned}$	Underdamped Stable
$\begin{aligned} & b^{2}-4 a c<0 \\ & \& b=0 \end{aligned}$	$\boldsymbol{p}_{1,2}= \pm j \frac{\sqrt{4 a c}}{2 a}= \pm j \omega$	Imaginary	$\begin{aligned} & y_{s f}(t)=C_{1} e^{j \omega t}+C_{2} e^{-j \omega t} \\ & =2 C \cos (\omega t+\theta) \\ & \text { where } p_{1,2}= \pm j \omega \\ & \& C_{2}=C_{1}{ }^{*} ; C_{1}=C e^{j \theta} \end{aligned}$	Undamped or Oscillatory Unstable

BME 333 Biomedical Signals and Systems

Solutions to the Source Free Response of $2^{\text {nd }}$ Order ODE

Overdamped $\quad y_{s f}(t)=C_{1} e^{p_{1} t}+C_{2} e^{p_{2} t} ;$ note that p_{1} and p_{2} are negative
Critically Damped $y_{s f}(t)=\left(C_{1} t+C_{2}\right) e^{p t}$; note that p is negative
Underdamped $y_{f f}(t)=C_{1} e^{p_{1} t}+C_{2} e^{p_{2} t}=e^{-\alpha t}\left(C_{1} e^{j o t}+C_{2} e^{-j \omega t}\right)$ where $p_{1,2}=-\alpha \pm j \omega$ but we can show that
$C_{2}=C_{1}{ }^{*}$; and assuming
$C_{1}=a+j b=C e^{j \theta}$; then $C_{2}=a-j b=C e^{-j \theta}$ $y_{f f}(t)=e^{-\alpha t}\left(C e^{j \theta} e^{j \omega t}+C e^{-j \theta} e^{-j \omega t}\right)=e^{-\alpha t}\left(C e^{j(\omega t+\theta)}+C e^{-j(\omega t \theta)}\right)$
Undamped

$$
=e^{-\alpha t} C\left(e^{j(\omega t \theta)}+e^{-j(\omega t+\theta)}\right)=e^{-\alpha t} 2 C \cos (\omega t+\theta)
$$

$y_{s f}(t)=C_{1} e^{j \omega t}+C_{2} e^{-j \omega t}=2 C \cos (\omega t+\theta) ;$ where $p_{1,2}= \pm j \omega ; C_{2}=C_{1}{ }^{*} ; C_{120}=C e^{j \theta}$ BME 333 Biomedical Signals and Systems

Source Free Responses of $2^{\text {nd }}$ Order ODE

Proof of the Complex Conjugate Constants Underdamped Case

$$
\begin{aligned}
& y(t)=e^{-\alpha t}\left(C_{1} e^{j \omega t}+C_{2} e^{-j \omega t}\right)=C_{1} e^{s_{1} t}+C_{2} e^{s_{1}{ }^{*} t} ; \text { where } s_{1}=-\alpha+j \omega \\
& y(0)=C_{1}+C_{2} \\
& \dot{y}(t)=s_{1} C_{1} e^{s_{1} t}+s_{1}{ }^{*} C_{2} e^{s_{1} t} \\
& \dot{y}(0)=s_{1} C_{1}+s_{1}{ }^{*} C_{2} \\
& C_{1}=y(0)-C_{2} \\
& \dot{y}(0)=s_{1}\left[y(0)-C_{2}\right]+s_{1}{ }^{*} C_{2} \\
& C_{2}=\frac{\dot{y}(0)-s_{1} y(0)}{s_{1}{ }^{*}-s_{1}}=\frac{\dot{y}(0)-(-\alpha+j \omega) y(0)}{-j 2 \omega}=\frac{y(0)}{2}+j \frac{\dot{y}(0)+\alpha y(0)}{2 \omega} \\
& C_{1}=y(0)-\frac{\dot{y}(0)-s_{1} y(0)}{s_{1}^{*}-s_{1}}=\frac{s_{1}{ }^{*} y(0)-\dot{y}(0)}{s_{1}^{*}-s_{1}}=\frac{(-\alpha-j \omega) y(0)-\dot{y}(0)}{-j 2 \omega}=\frac{y(0)}{2}-j \frac{\dot{y}(0)+\alpha y(0)}{2 \omega}
\end{aligned}
$$

Complex Plane

Complete Response of $2^{\text {nd }}$ Order ODE An Example

$\ddot{y}+4 \dot{y}+3 y=4 e^{-2 t} ; y(0)=2 ; \dot{y}(0)=4$ System with initial conditions
$p^{2}+4 p+3=0$ Characteristic Equation
$p_{1,2}=-3,-1$ Eigenvalues - Overdamped
$y_{s f}(t)=A_{1} e^{-3 t}+A_{2} e^{-t}$ Eigenfunctions and source free response
$y_{s}(t)=A_{3} e^{-2 t}$ Source free response
$y(t)=A_{1} e^{-3 t}+A_{2} e^{-t}+A_{3} e^{-2 t}$ Total response

$$
y(t)=-3 A_{1} e^{-3 t}-A_{2} e^{-t}-2 A_{3} e^{-2 t}
$$

$$
\ddot{y}(t)=9 A_{1} e^{-3 t}+A_{2} e^{-t}+4 A_{3} e^{-2 t}
$$

Complete Response of $2^{\text {nd }}$ Order ODE Solution

Substitute the solution, the first and second derivatives into the system

$$
\left(9 A_{1} e^{-3 t}+A_{2} e^{-t}+4 A_{3} e^{-2 t}\right)+4\left(-3 A_{1} e^{-3 t}-A_{2} e^{-t}-2 A_{3} e^{-2 t}\right)+3\left(A_{1} e^{-3 t}+A_{2} e^{-t}+A_{3} e^{-2 t}\right)=4 e^{-2 t}
$$

Resort the equation into like terms
$(9-12+3) A_{1} e^{-3 t}+(1-4+3) A_{2} e^{-t}+(4-8+3) A_{3} e^{-2 t}=4 e^{-2 t}$
Notice that the coefficents of the eigenfunctions are zero since they must satisfy the Homogeneous Equation.
What is left is the source term, the response due to the sources:
(0) $A_{1} e^{-3 t}+(0) A_{2} e^{-t}-A_{3} e^{-2 t}=4 e^{-2 t}$

From this A_{3} is determined:
$-A_{3} e^{-2 t}=4 e^{-2 t} \Rightarrow A_{3}=-4$
Using the initial conditions of the response and the first derivative, A_{1} and A_{2} are determined.

$$
\begin{aligned}
& y(0)=A_{1}+A_{2}-4=2 \Rightarrow A_{1}+A_{2}=6 \\
& \dot{y}(0)=-3 A_{1}-A_{2}+8=4 \Rightarrow-3 A_{1}-A_{2}=-4 \\
& -2 A_{1}=2 \Rightarrow A_{1}=-1 ; A_{2}=7
\end{aligned}
$$

The total solution is:

$$
\therefore y(t)=-e^{-3 t}+7 e^{-t}+-4_{3} e^{-2 t}
$$

Natural Frequency and Damping Ratio

$a p^{2}+b p+c=0$
$p^{2}+\frac{b}{a} p+\frac{c}{a}=0$
$p_{1,2}=-\frac{b}{2 a} \pm \sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}}$
If $b=0$, then $p_{1,2}= \pm j \sqrt{\frac{c}{a}}= \pm j \omega_{o}$
Define $\frac{c}{a}=\omega_{o}{ }^{2}$
Define $\frac{b}{2 a}=\xi \omega_{o} \Rightarrow \xi=\frac{b}{2 a \omega_{o}}=\frac{b}{2 a \sqrt{\frac{c}{a}}}=\frac{b}{2 \sqrt{a c}}$
We call ω_{o} the undamped natural frequency and ξ the damping ratio
$p^{2}+2 \xi \omega_{o} p+\omega_{o}{ }^{2}=0 \Rightarrow p_{1,2}=-\frac{b}{2 a} \pm \sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}} \Rightarrow-\xi \omega_{o} \pm \sqrt{\left(\xi \omega_{o}\right)^{2}-\omega_{o}{ }^{2}}$
$p_{1,2}=-\xi \omega_{o} \pm \sqrt{\left(\xi \omega_{o}\right)^{2}-\omega_{o}^{2}}=-\xi \omega_{o} \pm \omega_{o} \sqrt{\xi^{2}-1}$
For $\xi>1$, overdamped, $p_{1,2}=-\xi \omega_{o} \pm \omega_{o} \sqrt{\xi^{2}-1}=\omega_{o}\left(-\xi \pm \sqrt{\xi^{2}-1}\right)$
For $\xi=1$, critically damped, $p_{1,2}=-\omega_{o}$
For $\xi<1$, underdamped, $p_{1,2}=-\xi \omega_{o} \pm j \omega_{o} \sqrt{1-\xi^{2}}$
For $\xi=0$, undamped, $p_{1,2}= \pm j \omega_{o}$

Natural Frequency and Damping Ratio Unit Step Response

BME 333 Biomedical Signals and Systems

- J.Schesser

Unit Step Response
 Overdamped

$p^{2} y(t)+\frac{b}{a} p y(t)+\frac{c}{a} y(t)=\frac{1}{a} x(t)$
$p^{2} y(t)+2 \xi \omega_{o} p y(t)+\omega_{o}^{2} y(t)=K x(t)=1$
Source response is $y_{s}(t)=A=\frac{1}{\omega_{o}{ }^{2}}$
For $\xi>1$, overdamped, $p_{1,2}=\left(-\xi \pm \sqrt{\xi^{2}-1}\right) \omega_{o}$
Source free response is $y_{s f}(t)=C_{1} e^{\left(-\xi-\sqrt{\xi^{2}-1}\right) \omega_{0} t}+C_{2} e^{\left(-\xi+\sqrt{\xi^{2}-1}\right) \omega_{0} t}$ $y(t)=\frac{1}{\omega_{o}{ }^{2}}+C_{1} e^{\left(-\xi-\sqrt{\xi^{2}-1}\right) \omega_{o} t}+C_{2} e^{\left(-\xi+\sqrt{\xi^{2}-1}\right) \omega_{o} t}$
$y(0)=0=\frac{1}{\omega_{o}{ }^{2}}+C_{1}+C_{2} ; C_{1}=-\left(\frac{1}{\omega_{o}{ }^{2}}+C_{2}\right)$
$\dot{y}(0)=0+\left(-\xi-\sqrt{\xi^{2}-1}\right) \omega_{o} C_{1}+\left(-\xi+\sqrt{\xi^{2}-1}\right) \omega_{o} C_{2}$

$\dot{y}(0)=-\left(-\xi-\sqrt{\xi^{2}-1}\right) \omega_{o}\left[\left(\frac{1}{\omega_{o}{ }^{2}}+C_{2}\right)\right]+\left(-\xi+\sqrt{\xi^{2}-1}\right) \omega_{o} C_{2}=\left(\xi+\sqrt{\xi^{2}-1}\right) \omega_{o}\left[\left(\frac{1}{\omega_{o}{ }^{2}}+C_{2}\right)\right]+\left(-\xi+\sqrt{\xi^{2}-1}\right) \omega_{o} C_{2}$
$=-\left(-\xi-\sqrt{\xi^{2}-1}\right) \omega_{o} \frac{1}{\omega_{o}^{2}}+\left(\xi+\sqrt{\xi^{2}-1}\right) \omega_{o} C_{2}+\left(-\xi+\sqrt{\xi^{2}-1}\right) \omega_{o} C_{2}=\left(\xi+\sqrt{\xi^{2}-1}\right) \frac{1}{\omega_{o}}+\left(2 \sqrt{\xi^{2}-1}\right) \omega_{o} C_{2}$
$\dot{y}(0)=-\left(-\xi-\sqrt{\xi^{2}-1}\right) \frac{1}{\omega_{o}}+\left(2 \sqrt{\xi^{2}-1}\right) \omega_{o} C_{2} \Rightarrow C_{2}=\frac{\dot{y}(0)+\left(-\xi-\sqrt{\xi^{2}-1}\right) \frac{1}{\omega_{o}}}{\left(2 \sqrt{\xi^{2}-1}\right) \omega_{o}}$
$C_{2}=\frac{\dot{y}(0) \omega_{o}+\left(-\xi-\sqrt{\xi^{2}-1}\right)}{2 \omega_{o}^{2} \sqrt{\xi^{2}-1}} ; C_{1}=\left(\frac{\xi-\sqrt{\xi^{2}-1}-\dot{y}(0) \omega_{o}}{2 \omega_{o}^{2} \sqrt{\xi^{2}-1}}\right)$
$y(t)=\frac{1}{\omega_{o}{ }^{2}}+\frac{-\dot{y}(0) \omega_{o}+\xi-\sqrt{\xi^{2}-1}}{2 \omega_{o}{ }^{2} \sqrt{\xi^{2}-1}} e^{\left(-\xi-\sqrt{\xi^{2}-1}\right) \omega_{o} t}+\frac{\dot{y}(0) \omega_{o}-\xi-\sqrt{\xi^{2}-1}}{2 \omega_{o}{ }^{2} \sqrt{\xi^{2}-1}} e^{\left(-\xi+\sqrt{\xi^{2}-1}\right) \omega_{o} t}$
BME 333 Biomedical Signals and Systems

Unit Step Response Critically Damped

$p^{2} y(t)+\frac{b}{a} p y(t)+\frac{c}{a} y(t)=\frac{1}{a} x(t)$
$p^{2} y(t)+2 \xi \omega_{o} p y(t)+\omega_{o}^{2} y(t)=K x(t)=1$
Source response is $y_{s}(t)=A=\frac{1}{\omega_{o}^{2}}$
For $\xi=1$, critically damped, $p_{1,2}=-\omega_{o}$
Source free response is $y_{s f}(t)=\left(C_{1} t+C_{2}\right) e^{-\omega_{o} t}$
$y(t)=\frac{1}{\omega_{o}^{2}}+\left(C_{1} t+C_{2}\right) e^{-\omega_{o} t}$
$y(0)=0=\frac{1}{\omega_{o}^{2}}+C_{2}$

$C_{2}=-\frac{1}{\omega_{o}^{2}}$
$\dot{y}(0)=0+C_{1}-\omega_{o} C_{2}$
$C_{1}=\dot{y}(0)+\omega_{o} C_{2}=\dot{y}(0)-\frac{1}{\omega_{o}}$
$y(t)=\frac{1}{\omega_{o}^{2}}+\left(\left[\dot{y}(0)-\frac{1}{\omega_{o}}\right] t-\frac{1}{\omega_{o}^{2}}\right) e^{-\omega_{o} t}$

Unit Step Response
 Underdamped

$p^{2} y(t)+\frac{b}{a} p y(t)+\frac{c}{a} y(t)=\frac{1}{a} x(t)$
$p^{2} y(t)+2 \xi \omega_{o} p y(t)+\omega_{o}^{2} y(t)=K x(t)=1$
Source response is $y_{s}(t)=A=\frac{1}{\omega_{o}{ }^{2}}$
For $\xi<1$, underdamped, $p_{1,2}=-\xi \omega_{o} \pm j \omega_{o} \sqrt{1-\xi^{2}}$
Source free response is $y_{s f}(t)=e^{-\xi \omega_{o} t} K \cos \left(\omega_{o} \sqrt{1-\xi^{2}} t+\theta\right)$
$y(t)=\frac{1}{\omega_{o}{ }^{2}}+e^{-\xi \omega_{o} t} K \cos \left(\omega_{o} \sqrt{1-\xi^{2}} t+\theta\right)$
$y(0)=0=\frac{1}{\omega_{o}{ }^{2}}+K \cos (\theta) ; K \cos (\theta)=-\frac{1}{\omega_{o}{ }^{2}}$

$\dot{y}(0)=0+-\xi \omega_{o} K \cos (\theta)-\omega_{o} \sqrt{1-\xi^{2}} K \sin (\theta)=\xi \omega_{o} \frac{1}{\omega_{o}{ }^{2}}-\omega_{o} \sqrt{1-\xi^{2}} K \sin (\theta) ; K \sin (\theta)=-\frac{\dot{y}(0)-\frac{\xi}{\omega_{o}}}{\omega_{o} \sqrt{1-\xi^{2}}}$
$\theta=\tan ^{-1}\left(\frac{\dot{y}(0) \omega_{o}-\xi}{\sqrt{1-\xi^{2}}}\right) ; K=-\frac{1}{\omega_{o}{ }^{2} \cos \left(\tan ^{-1}\left(\frac{\dot{y}(0) \omega_{o}-\xi}{\sqrt{1-\xi^{2}}}\right)\right)}$
$y(t)=\frac{1}{\omega_{o}{ }^{2}}-e^{-\xi \omega_{o} t} \frac{1}{\omega_{o}{ }^{2} \cos \left(\tan ^{-1}\left(\frac{\dot{y}(0) \omega_{o}-\xi}{\sqrt{1-\xi^{2}}}\right)\right)} \cos \left(\omega_{o} \sqrt{1-\xi^{2}} t+\tan ^{-1}\left(\frac{\dot{y}(0) \omega_{o}-\xi}{\sqrt{1-\xi^{2}}}\right)\right)$

Unit Step Response Undamped

$p^{2} y(t)+\frac{b}{a} p y(t)+\frac{c}{a} y(t)=\frac{1}{a} x(t)$
$p^{2} y(t)+2 \xi \omega_{o} p y(t)+\omega_{o}^{2} y(t)=K x(t)=1$
Source response is $y_{s}(t)=A=\frac{1}{\omega_{o}^{2}}$
For $\xi=0$, undamped, $p_{1,2}= \pm j \omega_{o}$
Source free response is $y_{s f}(t)=C \cos \left(\omega_{o} t+\theta\right)$
$y(t)=\frac{1}{\omega_{o}^{2}}+C \cos \left(\omega_{o} t+\theta\right)$
$y(0)=0=\frac{1}{\omega_{o}^{2}}+C \cos (\theta) ; C \cos (\theta)=-\frac{1}{\omega_{o}^{2}}$

$\dot{y}(0)=0-\omega_{o} C \sin (\theta) ; C \sin (\theta)=-\frac{\dot{y}(0)}{\omega_{o}}$
$\theta=\tan ^{-1}\left(\dot{y}(0) \omega_{o}\right) ; C=-\frac{1}{\omega_{o}^{2} \cos \left(\tan ^{-1}\left(\dot{y}(0) \omega_{o}\right)\right)}$
$y(t)=\frac{1}{\omega_{o}^{2}}-\frac{1}{\omega_{o}^{2} \cos \left(\tan ^{-1}\left(\dot{y}(0) \omega_{o}\right)\right)} \cos \left(\omega_{o} t+\tan ^{-1}\left(\dot{y}(0) \omega_{o}\right)\right)$

Poles and Zeroes

- Source Response:

$$
\begin{gathered}
A(p) y(t)=B(p) x(t) \\
y(t)=\frac{B(p)}{A(p)} x(t) \\
y(t)=H(p) x(t) \\
H(p)=\frac{B(p)}{A(p)}
\end{gathered}
$$

$H(p)$ is known as the system function or network response

- We can think of the solutions of $B(p)=0$ as the zeroes of the system
- We can think of the solutions of $A(p)=0$ as the poles of the system

Poles and Zeros Continued

- If we assume that the source $x(t)$ has the form $x(t)=e^{s t}$ where s is a complex number, we can plot the poles and zeroes in the complex plane to graphically see the response to a particular source function. Note that $H(s)$ is a complex number with magnitude and angle.

$$
\begin{aligned}
& y(t)=H(p) x(t)=H(p) e^{s t} \\
& =H(s) e^{s t} \\
& \text { since } p e^{s t}=\frac{d}{d t} e^{s t}=s e^{s t}
\end{aligned}
$$

For example, if $H(p)$ have no zeroes and 2 poles, then

BME 333 Biomedical Signals and Systems

Homework

- $2^{\text {st }}$ Order ODEs

1. Using Matlab, plot the response for following systems. Identity what type of system each is. Submit your code:

$$
\begin{aligned}
& \text { a) } \ddot{x}+10 \dot{x}+4 x=0 ; x(0)=5 ; \dot{x}(0)=0 \\
& \text { b) } \ddot{x}+4 \dot{x}+4 x=0 ; x(0)=5 ; \dot{x}(0)=0 \\
& \text { c) } \ddot{x}+1 \dot{x}+4 x=0 ; x(0)=5 ; \dot{x}(0)=0 \\
& \text { d) } \ddot{x}+4 x=0 ; x(0)=5 ; \dot{x}(0)=0
\end{aligned}
$$

2. 2.2 An LTI system is described by the second-order ODE:

$$
\ddot{y}+7 \dot{y}+10 y=x(t)
$$

a. Use the p operator notation to find the roots of the characteristic equation.
b. Assume $y(0)=0, d y(0) / d t=9$ and $x(t)=0$, find $y(t)$.
c. Now Let $\mathrm{x}(\mathrm{t})=10$ and same initial conditions, find $\mathrm{y}(\mathrm{t})$.

Homework

3. A quadratic low-pass filter is described by the secondorder ODE:

$$
\ddot{y}+\left(2 \xi \omega_{n}\right) \dot{y}+\omega_{n}^{2} y=x(t)
$$

a. The characteristic equation for this ODE in terms of the p operator has complex conjugate roots. Find an algebraic expression for the position of the roots.
b. Let $x(t)=1$. Find the steady-state output.
c. Let $x(t)=0, y(0)=0$ and $d y(0) / d t=10$, Find and sketch $y(t)$ for $\xi=.5$ and $\omega_{n}=1$

Homework

4. An alternate way of writing the ODE for an underdamped system is

$$
\ddot{y}+2 a \dot{y}+\left(b^{2}+a^{2}\right) y=x(t)
$$

Let $\mathrm{a}=.5$ and $\mathrm{b}=.86603$. Repeat a, b, and c in problem 2 .

Homework

5. BioSignals

- An heart signal is sampled at the rate $250 \mathrm{~s} / \mathrm{s}$ and is passed to EKG which has an input consisting of a low pass filter. The filter is a resistor and capacitor in series where the output of the filter is taken across the capacitor. What should be the value of the Capacitor if the Resistor is 1 k ohms and the time constant of the filter so that the transient response is completed within $1 / 10$ of the sample time? What is the cutoff frequency of this filter?

Homework

6. Respiration may be modeled with the following second order equation, where $y(t)$ is the respiration signal and $x(t)$ is the additional load above the resting respiration on the body:

$$
\ddot{y}+\omega_{n}^{2} y=x(t)
$$

a. Calculate the resting respiration rate. Assume $y(0)=0$ and $d y(0) / d t=\omega_{n}$.
b. Calculate the respiration rate when $x(t)=\cos \left(\omega_{n} t\right)$. Assume the same initial conditions as part a.
c. Use Matlab to graph the signals for both parts. Assume $\omega_{n}=2 \pi$.

