
BME 333 Biomedical Signals and Systems 
- J.Schesser

105

LTI ODE Continued

Lecture #4
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Introduction of the p Operator

Let's start with this 2nd order differential equation
to represent some system.

a d 2 y(t)
dt2  b dy(t)

dt
 cy(t)  e dx(t)

dt
 fx(t)

where x(t) is the input or source, 
y(t) is the solution or the response of the differential equation,

and a,  b,  c,  d ,  f  are the coefficeints.
Let's define the p operators:

p  d
dt

, p2 
d 2

dt 2 ,..., pn 
d n

dtn

and rewrite the differential equation as
ap2 y(t)  bpy(t)  cy(t)  epx(t)  fx(t)
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Introduction of the p Operator

And now for some mathematical blasphemy!!!
ap2 y(t)  bpy(t)  cy(t)  epx(t)  fx(t)

[ap2  bp  c]y(t)  [ep  f ]x(t)

y(t)  ep  f
ap2  bp  c

x(t)

This is not a solution for y(t) but a way of reducing an equation
into a simpler form.
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Introduction of the p Operator

This is not a solution for y(t) but a way of reducing an equation
into a simpler form.

Note that [ap2  bp  c] and [ep  f ]
 are polynomials in p and we can rewrite these 

polynomials as [ap2  bp  c] = A( p) and 
[ep  f ] = B( p) and we get

A( p) y(t)  B( p)x(t)

y(t)  B( p)
A( p)

x(t)
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Components of the Solution of LODE 
A( p) y(t)  B( p)x(t)

Let's define y(t) which is 
the total response of the system

y(t)  ys (t)  ysf (t)

where  ys (t) is called the response due to the source 
and is the solution to this

A( p) ys (t)  B( p)x(t)
and  ysf (t) is called the source free response or the transient response.

and is the soltuion to this equation
A( p) ysf (t)  0

We can now use suposition, solve two simpler equations,
and add them up to get the total solution.
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Components of the Solution of LODE
Source Response 

• ys(t) - Source Response has the same 
form as the source and is a solution of:

A(p)ys(t)=B(p)x(t)
• If x(t) is a constant then ys(t) is a 

constant, if x(t) is a polynomial then 
ys(t) is a polynomial, if x(t) is a 
sinusoid then ys(t) is a sinusoid, etc.
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Components of the Solution of LODE
Source-Free Response

• ysf (t) - Source-free Response is also called the Natural 
Mode Response, Transient Response, Homogeneous, or 
Characteristic Response and is a solution of 

A(p)ysf (t)=0 Homogeneous Equation
A(p)=0 Characteristic Equation 

• Functions which satisfy the Homogeneous Equation are 
called eigenfunctions (e.g., Keat)

• The values of p which are solutions to the Characteristic 
Equation are called eigenvalues.
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Components of the Solution of LODE
Source-Free Response

Stability 
• The source-free response is independent of the source and 

always appears. It is a function of the system under 
examination.

• It determines the stability of the system. 
• For a stable system, 

1. it is expected that the source-free response is also know as the 
transient response since it is expected that this component will 
effectively “end”.

2. When the source-free response ends, the response due to the 
source or steady state remains.

• For an unstable system, the source-free response may 
never end.
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Components of the Solution of LODE: 
Source Response

Source Response:i
s
(t)

Since the source is a constant, Vs, then source response is a constant
i
s
(t)K

di
s
(t)

dt  R
Li

s
(t)Vs

L

Substituting i
s
(t) into the differential equation, we have

K Vs
R

i
s
(t)Vs

R

Let us look back at the RL circuit 1st Order ODE: Vs i(t)RLdi(t)
dt
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Components of the Solution of LODE:
Source Free Response: Using the 

Homogenous Equation
Source Free Response: i

sf
(t)

The Homogenous equation: Ldi(t)
dt i(t)R0

Solutions of the Homogenous equation (the eigenfunctions for a 1st  order ODE) are
i
sf

(t) Aeat

Substituting i
sf

(t) into the homogenous equation, we have 

di
sf

(t)
dt aAeat

aAeat  R
L Aeat 0

aR
L

i
sf

(t)Ke
R
L

t
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Components of the Solution of LODE:
Source Free Response: Using the 

Characteristic Equation

Source Free Response: i
sf

(t)

Note that the solution of the Characteristic equation (the eigenvalue) is

(p R
L)0

pR
L

and, therefore, same solution: i
sf

(t) Ae
R
L

t
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Components of the Solution of LODE: Total 
Solution

i(t)  is (t)  isf (t)


Vs
R
 Ae


R
L

t

Then the total response is:

The constant A can be found from initial conditions of i(t)
0

(0)

(0)

( ) ( (0) )

R
L

Rt
L

Vs Vsi Ae A
R R

VsA i
R

Vs Vsi t i e
R R





   

 

  
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Components of the Solution of LODE

( ) ( (0) )

( )

(1 )

Rt
L

Rt
L

Rt
L

Vs Vsi t i e
R R

Vs Vsi t e
R R

Vs e
R







  

 

 

In our problem i(0) = 0 :
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Free Response of a 2nd ODE
Solutions of the Characteristic Equation

02  cbpap

Let p1,p2 be the roots of the characteristic equation, then

a
acbbp

2
42

2,1


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The 4 Free Response Cases of a 2nd ODE
Solutions of the Homogeneous Equation

Case Roots Solution Type 
 
 
b2  4ac  0  

 

p1,2 
b  b2  4ac

2a
 

 
Real, 
Unequal, 
Negative 

ysf (t) C1e
p1t C2e

p2t

where C1  and C2  are real
 

 
 

Overdamped 
Stable 

b2  4ac  0
 p1,2  p  b

2a
 

Real, 
Equal, 
Negative 

ysf (t)  (C1t C2 )e pt

where C1  and C2  are real
 

 
 

Critically damped 
Stable 

b2  4ac  0  
 p1,2 

b  j 4ac  b2

2a
  j

 

Complex 
conjugates, 
Unequal 

ysf (t)  et (C1e
jt C2e

 jt ) 

where p1,2    j

C2 C1*;C1 Ce j

are complex conjugates
ysf (t)  etC(e j ( t )  e j (t ) )

 e t 2C cos(t  )
 

 
 
 

Underdamped 
Stable 

b2  4ac  0
& b  0

 p1,2   j 4ac
2a

  j  
Imaginary ysf (t) C 1e j t C 2 e j t

 2C cos(t  )
where p1,2   j

& C 2C 1*;C 1Ce j

 

 
Undamped or 
Oscillatory 
Unstable 
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Solutions to the Source Free Response of 2nd

Order ODE

Overdamped

Critically Damped

Underdamped

Undamped

ysf (t) C1e
p1t C2e

p2t ; note that p1 and p2  are negative

ysf (t)  (C1t C2 )e  pt ; note that p is negative

ysf (t) C 1e
j t C 2 e j t  2C cos(t  );where p1,2   j ; C 2C 1*;C 1Ce j

ysf (t) C1e
p1t C2e

p2t  e t (C1e
j t C2e

 j t ) where p1,2    j

but we can show that
C2 C1*;  and assuming

C1  a  jb Ce j ;  then C2  a  jb Ce j

ysf (t)  e t (Ce je j t Ce je j t )  e t (Ce j (t ) Ce j ( t ) )

 e tC(e j (t )  e j (t ) )  e t 2C cos( t  )
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Source Free Responses of 2nd Order ODE

0
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Proof of the Complex Conjugate Constants
Underdamped Case
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
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Complex Plane

Real axis

Imaginary axis
jω

-α

s=-α+jω

Real axis

Imaginary axis

p1 p2

Overdamped

Real axis

Imaginary axisUnderdamped

Real axis

Imaginary axis

p=p1 =p2

Critically Damped

Real axis

Imaginary axis
Undamped jω

-jω

jω

-jω

-α
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Complete Response of 2nd Order ODE
An Example

y


 4 y


 3y  4e2t ; y(0)  2; y


(0)  4 System with initial conditions
p2  4 p  3  0 Characteristic Equation
p1,2  3,1 Eigenvalues - Overdamped

ysf (t)  A1e
3t  A2e

 t  Eigenfunctions and source free response

ys (t)  A3e
2t  Source free response

y(t)  A1e
3t  A2e

t  A3e
2t  Total response

y


(t)  3A1e
3t  A2e

t  2A3e
2t

y


(t)  9A1e
3t  A2e

t  4A3e
2t
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Complete Response of 2nd Order ODE
Solution

Substitute the solution, the first and second derivatives into the system
(9A1e

3t  A2e
t  4A3e

2t )  4(3A1e
3t  A2e

 t  2A3e
2t )  3(A1e

3t  A2e
 t  A3e

2t )  4e2t

Resort the equation into like terms
(9 12 3)A1e

3t  (1 4  3)A2e
 t  (4 8 3)A3e

2t  4e2t

Notice that the coefficents of the eigenfunctions are zero since they must satisfy the Homogeneous Equation. 
What is left is the source term, the response due to the sources:
(0)A1e

3t  (0)A2e
 t  A3e

2t  4e2t

From this A3  is determined:

A3e
2t  4e2t  A3  4

Using the initial conditions of the response and the first derivative, A1  and A2  are determined.
y(0)  A1  A2  4  2 A1  A2  6

y


(0)  3A1  A2  8  43A1  A2  4
2A1  2 A1  1; A2  7
The total solution is:
 y(t)  e3t  7e t  43e2t
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2

2

2
1,2

1,2

2

2 2
1,2

0

0

( )
2 2

If 0, then  =

Define 

Define 
2 2 22

We call  the undamped natural frequency and  the damping ratio

2 0

o

o

o
o

o

o o

ap bp c
b cp p
a a

b b cp
a a a

cb p j j
a

c
a
b b b b
a a c aca

a

p p p
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 
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 
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  

  
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2 2
1,2

1,2

2
1,2

( ) ( )
2 2

( ) 1

For 1,  overdamped, 1 ( 1)
For 1,  critically damped, 

For 1,  underdamped, 1
For 0,  undamp

o o o

o o o o o

o o o

o

o o

b b c
a a a

p

p
p

p j

  

     

      

 

   



     

       

        

  

    

 1,2ed, op j 
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p2 y(t)  b
a

py(t)  c
a

y(t)  1
a

x(t)

p2 y(t)  2o py(t) o
2 y(t)  Kx(t) 1

Source response is ys (t)  A 
1
o

2

For  1,  critically damped, p1,2  o

Source free response is ysf (t)  (C1t C2 )eot

y(t)  1
o

2  (C1t C2 )eot

y(0)  0  1
o

2 C2

C2  
1
o

2

y(0)  0 C1 oC2

C1  y(0) oC2  y(0)  1
o

y(t)  1
o

2  ([ y(0)  1
o

]t  1
o

2 )eot
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Poles and Zeroes
• Source Response:

H(p) is known as the system function or network response

• We can think of the solutions of B(p) = 0 as the zeroes of the system 
• We can think of the solutions of A(p) = 0 as the poles of the system

( ) ( ) ( ) ( )
( )( ) ( )( )

( ) ( ) ( )
( )( ) ( )

A p y t B p x t
B py t x tA p

y t H p x t
B pH p A p
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Poles and Zeros Continued

• If we assume that the source x(t) has the form x(t)=est where s is a 
complex number, we can plot the poles and zeroes in the complex plane to 
graphically see the response to a particular source function.  Note that H(s)
is a complex number with magnitude and angle.
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Homework
• 2st Order ODEs 

1. Using Matlab, plot the response for following systems.  Identity what 
type of system each is.  Submit your code:

2. 2.2 An LTI system is described by the second-order ODE:

a. Use the p operator notation to find the roots of the characteristic equation.
b. Assume y(0)=0, dy(0)/dt=9 and x(t)=0, find y(t).
c. Now Let x(t) = 10 and same initial conditions, find y(t).

)(107 txyyy  
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Homework
3. A quadratic low-pass filter is described by the second-

order ODE:

a. The characteristic equation for this ODE in terms of the 
p operator has complex conjugate roots.  Find an 
algebraic expression for the position of the roots.

b. Let x(t)=1. Find the steady-state output.
c. Let x(t)=0, y(0)=0 and dy(0)/dt=10, Find and sketch y(t) 

for ξ =.5 and ωn=1

)()2( 2 txyyy nn   
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Homework

4. An alternate way of writing the ODE for an 
underdamped system is 

Let a=.5 and b=.86603.  Repeat a, b, and c in problem 2.

)()(2 22 txyabyay  



BME 333 Biomedical Signals and Systems 
- J.Schesser

137

Homework

5. BioSignals
– An heart signal is sampled at the rate 250 s/s 

and is passed to EKG which has an input 
consisting of a low pass filter.  The filter is a 
resistor and capacitor in series where the 
output of the filter is taken across the 
capacitor.  What should be the value of the 
Capacitor if the Resistor is 1k ohms and the 
time constant of the filter so that the transient 
response is completed within 1/10 of the 
sample time? What is the cutoff frequency of 
this filter?
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Homework
6. Respiration may be modeled with the following second 

order equation, where y(t) is the respiration signal and 
x(t) is the additional load above the resting respiration on 
the body:

a. Calculate the resting respiration rate.  Assume y(0)=0 
and dy(0)/dt=ωn.

b. Calculate the respiration rate when x(t)=cos(ωnt).  
Assume the same initial conditions as part a.

c. Use Matlab to graph the signals for both parts.  Assume 
ωn=2π.

y n
2y  x(t)


