Sinusoidal Response and Discrete Systems

Lecture \#5
 3CT. 2

Steady State Sinusoidal Response

- When the source-free or transient response ends in a stable system, what remains is the Steady State Response.
- For systems where the source is a Sinusoid, it is called the Steady State Sinusoidal Response.
- Therefore, we look at the solution of the system for the source response.

Steady State Sinusoidal Response

$$
a y+b y+c y=A \cos \omega t
$$

Source response is sinusoidal since the Source is Sinusoidal:

$$
y(t)=A_{1} \sin \omega t+B_{1} \cos \omega t
$$

First Derivative: $\dot{y}(t)=A_{1} \omega \cos \omega t-B_{1} \omega \sin \omega t$
Second Derivative: $\ddot{y}(t)=-A_{1} \omega^{2} \sin \omega t-B_{1} \omega^{2} \cos \omega t$

Substitute the source response and it's derivatives into the system equation:
$a\left(-A_{1} \omega^{2} \sin \omega t-B_{1} \omega^{2} \cos \omega t\right)+b\left(A_{1} \omega \cos \omega t-B_{1} \omega \sin \omega t\right)+c\left(A_{1} \sin \omega t+B_{1} \cos \omega t\right)=A \cos \omega t$

Sort the coefficients of the sine and cosine time dependancy functions

$$
\left(\left[c-a \omega^{2}\right] A_{1}-b \omega B_{1}\right) \sin \omega t+\left(\left[c-a \omega^{2}\right] B_{1}+b_{1} \omega A_{1}\right) \cos \omega t=A \cos \omega t
$$

Compare the coeffieients of the left side of the equation to the right side.

Steady State Sinusoidal Response

The coefficients of the the cosine function

$$
A=\left(c-a \omega^{2}\right) B_{1}+b \omega A_{1} \quad \text { Eqn. } 1
$$

The coefficients of the the sine function

$$
0=\left(c-a \omega^{2}\right) A_{1}-b \omega B_{1} \quad \text { Eqn. } 2
$$

Solve for the unknown coefficients of the source response, A_{1} and B_{1}

$$
\text { From Eqn. } 2 \Rightarrow B_{1}=\frac{\left(c-a \omega^{2}\right)}{b \omega} A_{1}
$$

Substituting this into Equ. 1 and solve for $A_{1} \Rightarrow A_{1}=\frac{b \omega}{\left[\left(\left(c-a \omega^{2}\right)\right)^{2}+(b \omega)^{2}\right]} A$
Then for $B_{1} \Rightarrow B_{1}=\frac{\left(c-a \omega^{2}\right)}{b \omega} \frac{b \omega}{\left[\left(\left(c-a \omega^{2}\right)\right)^{2}+(b \omega)^{2}\right]} A=\frac{\left(c-a \omega^{2}\right)}{\left[\left(\left(c-a \omega^{2}\right)\right)^{2}+(b \omega)^{2}\right]} A$
Substituting A_{1} and B_{1} into $y(t)$

$$
y(t)=\frac{A}{\left[\left(\left(c-a \omega^{2}\right)\right)^{2}+(b \omega)^{2}\right]}\left[b \omega \sin \omega t+\left(c-a \omega^{2}\right) \cos \omega t\right]
$$

And combine $y(t)$

$$
y(t)=\frac{A}{\sqrt{\left[\left(\left(c-a \omega^{2}\right)\right)^{2}+(b \omega)^{2}\right]}} \cos \left[\omega t-\tan ^{-1}\left(\frac{b \omega}{\left(c-a \omega^{2}\right)}\right)\right]
$$

BME 333 Biomedical Signals and Systems

- J.Schesser

A Simpler Approach to Steady State

 Sinusoidal Systems - Frequency Response- For systems where the source is a sinusoid, we can replace p with $j \omega$ in the system function $H(p)$ to yield in a complex function of $j \omega$, $\mathbf{H}(j \omega)$, or phasor form of $j \omega$,

$$
\begin{aligned}
& \mathbf{H}(j \omega)=A(\omega)+j B(\omega) \\
& =\sqrt{A(\omega)^{2}+B(\omega)^{2}} \angle \tan ^{-1}\left[\frac{B(\omega)}{A(\omega)}\right]
\end{aligned}
$$

- We call $\mathbf{H}(j \omega)$ the Frequency Response.

$$
\{j \omega \rightarrow j 2 \pi F ; \mathbf{H}(j \omega) \rightarrow \mathbf{H}(F)\}
$$

Frequency Response

```
We have \(A(p) y(t)=B(p) x(t)\)
And if \(x(t)=X(\omega) \cos \omega t=\mathfrak{R} e\left\{\mathbf{X}(j \omega) e^{j \omega t}\right\}\)
where \(e^{j \omega t}=\cos \omega t+j \sin \omega t\)
then \(y(t)=\Re e\left\{\mathbf{Y}(j \omega) e^{j \omega t}\right\}\)
```

If we put $x(t)$ in the system we can get $y(t)$
but instead we can use $\mathbf{Y}(j \omega) e^{j \omega t}$ and $\mathbf{X}(j \omega) e^{j \omega t}$
Therefore, $A(p) \mathbf{Y}(j \omega) e^{j \omega t}=B(p) \mathbf{X}(j \omega) e^{j \omega t}$

Frequency Response

```
Therefore, \(A(p) \mathbf{Y}(j \omega) e^{j \omega t}=B(p) \mathbf{X}(j \omega) e^{j \omega t}\)
which becomes \(\mathbf{Y}(j \omega) A(j \omega) e^{j \omega t}=\mathbf{X}(j \omega) B(j \omega) e^{j \omega t}\)
\(A(j \omega) \mathbf{Y}(j \omega)=B(j \omega) \mathbf{X}(j \omega)\)
Or
\(\mathbf{Y}(j \omega)=\frac{B(j \omega)}{A(j \omega)} \mathbf{X}(j \omega)\)
\(\mathbf{Y}(j \omega)=\mathbf{H}(j \omega) \mathbf{X}(j \omega)\)
\(\mathbf{H}(j \omega)=\frac{B(j \omega)}{A(j \omega)}\)
```

[The text uses $\left.\omega=2 \pi F y(t)=\mathfrak{R} e\left\{\mathbf{H}(F) \mathbf{X}(F) e^{j 2 \pi F t}\right\}\right]$

Frequency Response Using Phasors

Example:
In our example: $x(t)=A \cos (\omega t) \Rightarrow \mathbf{X}(j \omega)=A \angle 0$
$\left(a p^{2}+b p+c\right) y(t)=A \cos \omega t \Rightarrow\left(a(j \omega)^{2}+b j \omega+c\right) \mathbf{Y}(j \omega)=A \angle 0$
$\mathbf{Y}(j \omega)=\frac{A \angle 0}{c-a \omega^{2}+j b \omega}=\frac{A \angle 0}{\sqrt{\left(c-a \omega^{2}\right)^{2}+(b \omega)^{2}} \angle \tan ^{-1}\left(\frac{b \omega}{c-a \omega^{2}}\right)}$
$\mathbf{Y}(j \omega)=\frac{A}{\sqrt{\left(c-a \omega^{2}\right)^{2}+(b \omega)^{2}}} \angle-\tan ^{-1}\left(\frac{b \omega}{c-a \omega^{2}}\right)$
$y(t)=\frac{A}{\sqrt{\left(c-a \omega^{2}\right)^{2}+(b \omega)^{2}}} \cos \left[\omega t-\tan ^{-1}\left(\frac{b \omega}{c-a \omega^{2}}\right)\right]$

Bode Plots

- Plot of the \log of the magnitude and angle of the frequency response $H(j \omega)$ on a single logarithmic chart
- Sanity Checks: at $\omega=0, \omega \rightarrow \infty$, at other ω^{\prime} s (e.g., at poles or zero break frequencies or resonance frequencies)
- From the previous second order example:

$$
H(j \omega)=\frac{1}{\left(c-a \omega^{2}\right)+j b \omega} \quad \begin{array}{ll}
|H(j \omega)|=\frac{1}{\sqrt{\left(c-a \omega^{2}\right)^{2}+(b \omega)^{2}}} \\
\phi(j \omega)=-\tan ^{-1}\left(\frac{b \omega}{c-a \omega^{2}}\right)
\end{array}
$$

$2^{\text {nd }}$ Order ODE Bode Plot

BME 333 Biomedical Signals and Systems

$2^{\text {nd }}$ Order ODE Bode Plot

BME 333 Biomedical Signals and Systems

Our old Example

Let us look back again at our RL circuit:

$$
\begin{aligned}
& V \cos \omega t=i(t) R+L \frac{d i(t)}{d t} \\
& L \frac{d i(t)}{d t}+R i(t)=V \cos \omega t \\
& (p L+R) i(t)=V \cos \omega t \\
& (j \omega L+R) I(j \omega)=V \angle 0 \\
& I(j \omega)=\frac{V \angle 0}{(j \omega L+R)}=\frac{V}{\sqrt{R^{2}+(\omega L)^{2}}} \angle-\tan ^{-1} \frac{\omega L}{R}
\end{aligned}
$$

Discrete Time Equations

- Source Response:

$$
a y[n+2]+b y[n+1]+c y[n]=x[n]
$$

- Characteristic/Homogeneous Response

$$
a y[n+2]+b y[n+1]+c y[n]=0
$$

- Eigenfunctions: $y[n]=A z^{n}$

Eigenvalues: z

A Discrete Time Example: Mortgage Loan

Calculation

- Assumptions:
- Let $P[i]=$ remaining principal at period i
- Let $r=$ the interest rate per period
$-N=$ point at which the loan is paid off (i.e., $P[N]=0$)
$-P c=$ constant periodic payment $=\Delta_{P}^{i}+\Delta_{I}^{i}$
- where $\quad \Delta_{P}^{i} \quad$ is the portion of $P c$ associated with the payout of the principal for period i
- where $\quad \Delta_{I}^{i}=r P[i] \quad$ is the portion of $P c$ associated with the payout of the interest for period i

Mortgage Loan Calculation Problem Formulation

- The principal remaining at period i equals the principal at period $i-1$ less the principal payout at period $i-1$

OR

$$
P[i]=P[i-1]-\Delta_{P}^{i-1}=P[i-1]-\{P c-r P[i-1]\}
$$

OR

$$
(1+r) P[i-1]-P[i]=P c
$$

Mortgage Loan Calculation
 Solution

- Using the eigenfunction $=a^{i}$, we test the solution: $\quad P[i]=A_{1} a^{i}+A_{2} \quad$ and we have

$$
\begin{aligned}
& (1+r)\left\{A_{1} a^{i-1}+A_{2}\right\}-\left\{A_{1} a^{i}+A_{2}\right\}=P c \\
& \left\{(1+r) A_{1} a^{i-1}-A_{1} a^{i}\right\}+(1+r) A_{2}-A_{2}=P c
\end{aligned}
$$

$$
\text { 1) }(1+r) A_{1} a^{i-1}-A_{1} a^{i}=0 \Rightarrow a=(1+r)
$$

$$
\text { 2) }\{(1+r)-1\} A_{2}=P c \Rightarrow A_{2}=\frac{P c}{r}
$$

$$
P[i]=A_{1}(1+r)^{i}+\frac{P c}{r} ; P[N]=0 \Rightarrow A_{1}=-\frac{P c}{r(1+r)^{N}}
$$

$$
\therefore P[i]=\frac{P c}{r(1+r)^{N}}\left\{(1+r)^{N}-(1+r)^{i}\right\}
$$

Mortgage Loan Calculation Solution

- z operators

$$
\begin{aligned}
& z^{1} \Rightarrow \text { advance of } 1 \text { sample time } \\
& z^{2} \Rightarrow \text { advance of } 2 \text { sample times } \\
& \vdots \\
& z^{-1} \Rightarrow \text { delay of } 1 \text { sample time } \\
& z^{-2} \Rightarrow \text { delay of } 2 \text { sample times } \\
& \vdots
\end{aligned}
$$

Mortgage Loan Calculation
 Solution

$$
\begin{aligned}
& (1+r) P[i-1]-P[i]=P c \\
& {\left[(1+r) z^{-1}-1\right] P[i]=P c: \text { Source equation }} \\
& {\left[(1+r) z^{-1}-1\right] P[i]=0: \text { Source Free Homogeneous equation }} \\
& (1+r) z^{-1}-1=0: \text { Characteristic equation } \\
& \therefore z_{1}=1+r \\
& P[i]=K_{1}+K_{2} z_{1}^{i}=K_{1}+K_{2}(1+r)^{i}
\end{aligned}
$$

Mortgage Loan Calculation Solution

Source equation
$\left[(1+r) z^{-1}-1\right] K_{1}=P c$
Note: $z^{-1} K_{1}=K_{1}$ since K_{1} is a constant

$$
\begin{aligned}
& {[(1+r)-1] K_{1}=P c} \\
& K_{1}=\frac{P c}{r} \\
& P[i]=\frac{P c}{r}+K_{2}(1+r)^{i}
\end{aligned}
$$

Note: Final condition: $P[N]=0$

$$
\begin{aligned}
& P[N]=\frac{P c}{r}+K_{2}(1+r)^{N}=0 \\
& K_{2}=-\frac{P c}{r(1+r)^{N}} \\
& P[i]=\frac{P c}{r}-\frac{P c}{r(1+r)^{N}}(1+r)^{i}=\frac{P c}{r(1+r)^{N}}\left[(1+r)^{N}-(1+r)^{i}\right]
\end{aligned}
$$

Homework

- Sinusoidal Steady State
- Calculate the Sinusoidal Steady State Response of the network function for the following networks:

- Bode Plots
- Draw the Bode Plots for these networks.
- Use Matlab to plot the Bode Plot, submit your code.
- Discrete ODE
- Calculate the monthly payment Pc
- 3CT.3.1,3CT.3.2, 3СТ.3.4

