Sinusoidal Response and Discrete Systems

Lecture #5
3CT.2
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Steady State Sinusoidal Response

* When the source-free or transient response ends
in a stable system, what remains 1s the Steady
State Response.

* For systems where the source 1s a Sinusoid, it 1s
called the Steady State Sinusoidal Response.

* Therefore, we look at the solution of the system
for the source response.
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Steady State Sinusoidal Response

ay+by+cy=Acoswt
Source response is sinusoidal since the Source 1s Sinusoidal:
y(t) = A sinwi+ B coswi
First Derivative: y(¢) = A @ cos @t — B @ sin wt

. . e . 2 . 2
Second Derivative: y(1) = —A®” sinwt — B,w” cos wt

Substitute the source response and it's derivatives into the system equation:

a(—A@* sinwt — B w* coswr) + b(A o cos ot — Bwsinwt) + c(4, sinwt + B coswt) = Acos ot

Sort the coefficients of the sine and cosine time dependancy functions
([c—aw*]4, — bwB)sinwt + ([c — aw’]B, + bwA ) coswt = Acos vt

Compare the coeffieients of the left side of the equation to the right side.
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Steady State Sinusoidal Response

The coefficients of the the cosine function
A=(c— aco2)B1 +bwA, Eqgn. 1
The coefficients of the the sine function
0=(c— aa)z)A1 —bwB, Eqn. 2
Solve for the unknown coefficients of the source response, 4 and B,

(c—aw®)

From Eqn.2 = B =
q 1 bw Al
o . bw
Substituting this into Equ. 1 and solve for 4 = 4 = > —A
[((c-aw”)) +(bo) ]
— am? 2
Then for B, = B, = £~ 92" bo A= Leza)

bo  {((c-aw®)) +(b0) 1 [((c-aw®)) +(bw)]
Substituting 4 and B, into ()

A2 —[bwsinwt +(c—aw®)cos 1]
((e=ae")) +(bo) ]
And combine y(?)

()=

4 cos[wt —tan™' (b—a))]

(1) = >
\/[((c—aa)z))z +(bo)] (€ —awr)
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A Simpler Approach to Steady State
Sinusoidal Systems — Frequency Response

* For systems where the source 1s a sinusoid, we
can replace p with jw 1n the system function
H(p) to yield 1n a complex function of jw,
H(jw), or phasor form of jw,

H(jo) = A(w) + jB(w)

B(a))]
A(w)
 We call H(jw) the Frequency Response.

o — j2rFH(jo) — H(F))
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Frequency Response

We have A(p)y (1) = B(p)x(?)

And if x(£) = X (@) cos ot = Re{X(jw)e™™ )
where e’”" = coswt + jsin wt

then y(¢) = Re{Y(jw)e’"}

If we put x(¢) in the system we can get y(¢)
but instead we can use Y (jw)e’”and X(jw)e’
Therefore, A(p)Y(j@)e™ = B(p)X(jw)e™
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Frequency Response

Therefore, A(p)Y(jw)e’ = B(p)X(jw)e™™

which becomes Y (jw)A(jw)e’™ = X(jw)B(jw)e’™
A(jo)Y(jo) = B(jo)X(jo)

Or

B(jo)
A(jo)

Y(jo)= X(jo)

Y(jo)=H(jo)X(jo)

_ B(jw)

MU= )

[The text uses @ = 27F y(t) = Re{H(F)X(F)e’*""}]
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Frequency Response Using Phasors

Example:
In our example: x(¢) = Acos(wt) = X(jw) = A£0
(ap” +bp+c)y(t) = Acoswt = (a(jw)* +bjw +c)Y(jw)= A£0

Y(joy— AL 420
_ A
a0+ b0 (" 4wy + (bwy Ltan™ (22
cC—aq
Y(jw)= 4 L — tan_l( beo )
J 2
J(c—aw®) + (bw)’ ¢c—aw
y(t) = 4 cos[wt —tan ' ( b )]
J(c—aw®) +(bo)’ ¢—aw
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Bode Plots

* Plot of the log of the magnitude and angle of the
frequency response H(jw) on a single logarithmic
chart

o Sanity Checks: at w =0, w =» o, at other w” s (e.g.,
at poles or zero break frequencies or resonance
frequencies)

* From the previous second order example:
1

. | H(jw)| =
H (() — _ 22 2
¢(jw)=—tan"'( =)
c—aaa
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2" Order ODE Bode Plot
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2" Order ODE Bode Plot
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Our old Example

Let us look back again at our RL circuit:

di(t)
dt

Veosaxt=i(t)R+ L

di(1)
dt

(pL+R)i(t) =V cosax

(JoL+R)I(jw)=V £0

I(jw) = VZ0 V -1 oL

L + Ri(t) =V cos ax

- = Z—tan
(JoL+R) \/ R2 + (L) R
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Discrete Time Equations
* Source Response:

aylnt2] + b yln+1] + c y[n] = x[n]

* Characteristic/Homogeneous Response
a y[nt2] + b y[n+1]+c y[n] =0

* Eigenfunctions: y[n]=A4 z"
Eigenvalues: z
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A Discrete Time Example: Mortgage Loan
Calculation

e Assumptions:
— Let P[i] = remaining principal at period 1
— Let » = the interest rate per period
— N = point at which the loan 1s paid off (1.e., P[N] = 0)
— Pc = constant periodic payment = A , T A ;
— where A » 1s the portion of Pc associated with the
payout of the principal for period i

— where A, =rP[i] is the portion of Pc associated
with the payout of the interest for period i
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Mortgage Loan Calculation
Problem Formulation

* The principal remaining at period i equals
the principal at period i-/ less the principal
payout at period i-/

OR
Pli]=Pli—-1]-A' = Pli-1]- {Pc—rP[i 1]}
OR

(1+7)P[i—1]- P[i]= Pc

BME 333 Biomedical Signals and Systems 16
- J.Schesser



Mortgage Loan Calculation
Solution

» Using the eigenfunction = a', we test the

solution: Pli]=4a +A4, and we have
(1+r){da™" + A} —{Aa'+ A} = Pc

{A+r)Aa™ —Aa' Y +(1+r)4,— A, = Pc

D(A+r)A4da" —4a =0=>a=(+7r)

2) {(1+r)-1}A2 = Pc= A2 = —PC
2
P[l]:AI(l+r)l—|——PC’P[N]:O$A1:— PC ~
7 r(l+r)
. PC N i
..P[z]—r(l_l_r)N {1+r)" —(1+r)}
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Mortgage Loan Calculation
Solution

* 7 operators

z' = advance of 1 sample time

z*> = advance of 2 sample times

z~' = delay of 1 sample time

z> = delay of 2 sample times
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Mortgage Loan Calculation
Solution

Pc

P[i]= Pc: Source equation

[
[

(1+r)P[i—1]- P[]
[(1+7r)z" =1]
[(1+7r)z" =1]P

(1+7)z"' =1=0: Characteristic equation

i]=0: Source Free Homogeneous equation

Sz =1+r

Plil1=K,+K,z/ =K, +K,(1+7r)’
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Mortgage Loan Calculation
Solution

Source equation

[(1+7)z"' =1]K, = Pc

Note: z 'K, = K, since K, is a constant
[(1+7)-1]K, = Pc

Pli]= &+K2(1+r)"
r

Note: Final condition: P[N]=0

P[N]=&+K2(1+r)N =0
r
K, = Pc
r(l+r)"
,_Pc_ Pc P _ Pc N ;
P[Z]_r r(1+r)N(1+r) r(1+r)N[(1+r) (1+7r)]
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Homework
Sinusoidal Steady State

Calculate the Sinusoidal Steady State Response of the

network function for the following networks

Vr'n

R
R
AMA—e ——/vvx,——4
1k L
3 10mH  Vour v, L 10mH —[

Bode Plots

Draw the Bode Plots for these networks.

Use Matlab to plot the Bode Plot, submit your code.

Discrete ODE
Calculate the monthly payment Pc

3CT.3.1,3CT.3.2,3CT.3.4
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