Convolution

Lecture \#6
 2CT. 3 - 8

Definition

Convolution is an operation on two functions of time.
The following integral is the definition of convolving $f_{1}(t)$ with $f_{2}(t)$:
$g(t)=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau$

This says, first take $f_{2}(t)$ and convolve it doing the following:

1. flip it in time : $f_{2}(t) \Rightarrow f_{2}(-t)$
2. displace (shift) it in time by the amount τ seconds: $f_{2}(-t) \Rightarrow f_{2}(\tau-t)$
3. take the convolved $f_{2}(t)$ and multiple it by $f_{1}(t)$
4. integrate with respect to τ over all time which will produce another function, $g(t)$, of time, t.

Properties of Convolution

- First some shorthand:

$$
\int f_{1}(\tau) f_{2}(t-\tau) d \tau \Rightarrow f_{1}(t) \otimes f_{2}(t)
$$

- Commutative:

$$
f_{1}(t) \otimes f_{2}(t)=f_{2}(t) \otimes f_{1}(t)
$$

- Associative:

$$
f_{1}(t) \otimes\left[f_{2}(t) \otimes f_{3}(t)\right]=\left[f_{1}(t) \otimes f_{2}(t)\right] \otimes f_{3}(t)
$$

- Distributive:

$$
f_{1}(t) \otimes\left[f_{2}(t)+f_{3}(t)\right]=\left[f_{1}(t) \otimes f_{2}(t)\right]+\left[f_{1}(t) \otimes f_{3}(t)\right]
$$

A Graphical Example of How to Perform a Convolution

$$
C=\int f(\tau) h(t-\tau) d \tau
$$

$$
h(-t)
$$

A Graphical Example of How to Perform a Convolution

We need to look at 5 cases:

1) $t<0$ For this case $1, \mathrm{C}=0$ since there is no overlap.
2) 2) $0<t<T$
1) 3) $T<t<2 T$,
1) $2 T<t<3 T$

Case 5: $t>3 T$

5) $t>3 T$ For this case $1, \mathrm{C}=0$ since there is no overlap.

Graphical Convolution Example Continued

Case 2: $0<t<T$

$$
f(t) h(t-t), 0<t<T
$$

$C=\int_{0}^{t} A B\left(1-\frac{\tau}{T}\right) d \tau=A B\left(t-\frac{t^{2}}{2 T}\right)$
$f(t) h(t-\tau), T<t<2 T$
Case 3: $T<t<2 T$

$C=\int_{0}^{T} A B\left(1-\frac{\tau}{T}\right) d \tau=A B\left(T-\frac{T^{2}}{2 T}\right)=A$

Matlab Code

```
Signals
clear all;
endpulse \(=2\);
ts=.001;
endpoint=10;
\(\mathrm{n}=\)-endpoint:ts:endpoint;
\(\mathrm{nn}=-\) endpoint*2:ts:endpoint*2;
pulser \(=(\mathrm{n}>=0) \&(\mathrm{n}<=\) endpulse \()\);
```



```
Convolution
pulse \(=1\) *pulser;
tripulse \(=(\mathrm{n}>=0) \&(\mathrm{n}<=1)\);
tri=(1-n).*tripulse;
subplot(2,1,1)
plot(n,tri,'r',n,pulse, 'b');
title('Signals');
xlabel('Time (Seconds)');
```



```
\(\operatorname{axis}([-110 \min ([\min (t r i) \min (\) pulse \()]) 1.1 * \max ([\max (\) tri \() \max (\) pulse \()])])\);
\(\mathrm{c}=\operatorname{conv}\) (pulse,tri)*ts;
subplot(2,1,2)
plot(nn, c);
title('Convolution');
xlabel('Shift (Seconds)');
\(\operatorname{axis}\left(\left[-110 \min (c) 1.1^{*} \max (\mathrm{c})\right]\right)\);

\section*{Integration of Convolution Integral}

Case 2: \(0<t<T\)
\(C=\int_{0}^{t} A B\left(1-\frac{\tau}{T}\right) d \tau=\left.A B(-T) \frac{1}{2}\left(1-\frac{\tau}{T}\right)^{2}\right|_{0} ^{t}=A B(-T) \frac{1}{2}\left\{\left(1-\frac{t}{T}\right)^{2}-1\right\}\)
\(=A B(-T) \frac{1}{2}\left\{\left(1-\frac{2 t}{T}+\frac{t^{2}}{T^{2}}\right)-1\right\}=A B(-T) \frac{1}{2}\left\{-\frac{2 t}{T}+\frac{t^{2}}{T^{2}}\right\}\)
\(=A B(-T) \frac{1}{2}\left\{-\frac{2 t}{T}+\frac{t^{2}}{T^{2}}\right\}=A B\left\{t-\frac{t^{2}}{2 T}\right\}\)
Case 3: \(T<t<2 T\) (From the integration from Case 2)
\(C=\int_{0}^{T} A B\left(1-\frac{\tau}{T}\right) d \tau=\left.A B(-T) \frac{1}{2}\left(1-\frac{\tau}{T}\right)^{2}\right|_{0} ^{T}=A B\left\{T-\frac{T^{2}}{2 T}\right\}\)
\(=A B\left\{T-\frac{T}{2}\right\}=A B \frac{T}{2}\)
Case 4: \(2 T<t<3 T\) (From the integration from Case 2)
\(C=\int_{-(2 T-t)}^{T} A B\left(1-\frac{\tau}{T}\right) d \tau=\left.A B(-T) \frac{1}{2}\left(1-\frac{\tau}{T}\right)^{2}\right|_{-(2 T-t)} ^{T}=A B(-T) \frac{1}{2}\left\{\left(1-\frac{T}{T}\right)^{2}-\left(1-\frac{-(2 T-t)}{T}\right)^{2}\right\}\)
\(=A B(-T) \frac{1}{2}\left\{(0)^{2}-\left(1+\frac{(2 T-t)}{T}\right)^{2}\right\}=A B(T) \frac{1}{2}\left\{\left(1+\frac{(2 T-t)}{T}\right)^{2}\right\}\)
\(=A B(T) \frac{1}{2}\left\{\left(1+\frac{2(2 T-t)}{T}+\frac{(2 T-t)^{2}}{T^{2}}\right)\right\}=A B\left\{\left(\frac{T}{2}+(2 T-t)+\frac{(2 T-t)^{2}}{2 T}\right)\right\}\)

\section*{Convolution and Systems}
- For an LTI system, let's define \(h(t)\) as the system response to a unit impulse source, \(\delta(t)\).
- Then the following must be true:
\[
\begin{gathered}
x(t) \rightarrow y(t) x(t) \text { input to the system yields output } y(t) \\
\delta(t) \rightarrow^{L T I} h(t) \delta(t) \text { input to the system yields output } h(t) \\
\delta(t-k \Delta) \rightarrow h(t-k \Delta) \text { time invariance, time shift by } k \Delta
\end{gathered}
\]

\section*{Convolution and Systems Continued}

Construct \(x(t)\) as the sum of \(k\) unit impulse slices. The first expression represents the \(k\) slices of the source totaled as \(k\) approaches infinity.

\section*{Left Side Equals}


Construct \(y(t)\) as the sum of \(k\) slices of the response due to an unit impulse function: \(x(k \Delta) h(t-k \Delta)\). The integral on the right is the convolution of \(x(t)\) and \(h(t)\).

Right Side Equals
\(\lim _{\substack{\Delta \Delta 0 \\ k \rightarrow \infty}} \sum_{k} x(k \Delta) h(t-k \Delta) \Delta\) approaches \(\int_{\tau} x(\tau) h(t-\tau) d \tau\) \(k \Delta \rightarrow \tau\)
\[
\begin{aligned}
& \sum_{k} x(k \Delta) \delta(t-k \Delta) \Delta \rightarrow \sum_{k} x(k \Delta) h(t-k \Delta) \Delta \\
& x(t) \rightarrow \int_{\tau} x(\tau) h(t-\tau) d \tau=y(t)
\end{aligned}
\]

\section*{Convolution and Systems Continued}
\[
y(t)=\int_{\tau} x(\tau) h(t-\tau) d \tau
\]

This result is very important since it says that if one knows the impulse response of a system then the output response for any given input source can be found by convolving the input with the impulse response.

\section*{Impulse Response and Causality}
- \(y\left(t_{o}\right)\) does not depend on \(x\left(t_{i}\right)\) that occur at times after \(t_{o}, t_{i}>t_{o}\).

- \(y\left(t_{o}\right)=\int_{-\infty}^{\infty} h(\tau) x\left(t_{o}-\tau\right) d \tau=\int_{-\infty}^{o^{-}} h(\tau) x\left(t_{o}-\tau\right) d \tau+\int_{0}^{\infty} h(\tau) x\left(t_{o}-\tau\right) d \tau\) break up into 2 integrals:
one for positive \(\tau\) and one for negative \(\tau\)
- For the positive \(\tau\) integral \(\int_{0}^{\infty} h(\tau) x\left(t_{o}-\tau\right) d \tau\), if \(\tau\) is positive, then \(t_{o}-\tau<t_{o}\), and for \(x\left(t_{i}=t_{o}-\tau\right)=x\left(t_{o}-\tau\right)\) we have \(t_{i}<t_{o}\)
- For the negative \(\tau\) integral \(\int_{-\infty}^{0^{-}} h(\tau) x\left(t_{o}-\tau\right) d \tau\), if \(\tau\) is negative,then \(t_{o}-\tau>t_{o}\), and for \(x\left(t_{i}=t_{o}-\tau\right)=x\left(t_{o}-\tau\right)\) we have \(t_{i}>t_{o}\) THIS CAN'T HAPPEN IN A REAL CAUSAL SYSTEM.
- Therefore for \(y(t)\) to be causal this \(\int_{-\infty}^{0-} h(\tau) x\left(t_{o}-\tau\right) d \tau\) must be zero and for this to happen \(h(t)=0, t<0\).

\section*{Calculating the Unit Impulse Response, h(t)}


Let's first look at 2 methods:
1. Narrow Pulse approximation
2. Differentiating \(u(t)\)

Better Methods to Come

\section*{Narrow Pulse Approximation}
```

|}=\mathrm{ width of the pulse
\frac{1}{\varepsilon}}=\mathrm{ height of the pulse
As $\varepsilon \rightarrow 0$, the narrow pulse $=\frac{1}{\varepsilon}\{u(t)-u(t-\varepsilon)\} \rightarrow \delta(t)$

```

So then let's first look at the response to \(u(t)\) :
\(V s u(t)=i(t) R+L \frac{d i(t)}{d t}\)
\(i(t)=V s / R\left(1-e^{-(R / L) t}\right) u(t)\)

Now we construct the narrow pulse response:
\[
\begin{aligned}
& i(t)=\frac{V S}{R} \frac{1}{\varepsilon}\left\{\left(1-e^{-\left(\frac{R}{L}\right) t}\right) u(t)\right. \\
&\left.-\left(1-e^{-\left(\frac{R}{L}\right)(t-\varepsilon)}\right) u(t-\varepsilon)\right\}
\end{aligned}
\]

\section*{Narrow Pulse Approximation Continued}
\[
\begin{aligned}
& i(t)=(V s / R)(1 / \varepsilon)\left[\left(1-e^{-(R L L) t}\right) u(t)-\left(1-e^{-(R L L)(t-\varepsilon)}\right) u(t-\varepsilon)\right] \\
& i(t)=\left\{\begin{array}{c}
\text { OR } \\
0, \quad \text { for } t<0 \\
(V S / R)(1 / \varepsilon)\left[\left(1-e^{-(R L L) t}\right)\right] \text { for } 0 \leq t<\varepsilon \\
\left.(V s / R)(1 / \varepsilon)\left[\left(1-e^{-(R L L) t}\right)\right]-\left(1-e^{-R L(t-\varepsilon)}\right)\right], \text { for } t>\varepsilon
\end{array}\right. \\
& \text { OR } \\
& i(t)=\left\{\begin{array}{c}
0, \quad \text { for } t<0 \\
(V s / R)(1 / \varepsilon)\left[\left(1-e^{-(R / L) t}\right)\right], \text { for } 0 \leq t<\varepsilon \\
\left.(V S / R)(1 / \varepsilon)\left[\left(e^{R L L \varepsilon}-1\right) e^{-(R L L) t}\right)\right], \text { for } t>\varepsilon
\end{array}\right.
\end{aligned}
\]

\section*{Taylor Series Approximation for \(e^{x}\)}
\[
e^{a x}=\frac{(a x)^{0}}{0!}+\frac{(a x)^{1}}{1!}+\frac{(a x)^{2}}{2!}+\frac{(a x)^{3}}{3!}+\ldots
\]
for \(\mathrm{x} \approx 0\), we can drop the higher order terms:
\[
\begin{aligned}
& e^{a x} \approx \frac{(a x)^{0}}{0!}+\frac{(a x)^{1}}{1!}=1+a x \\
& e^{-\frac{R}{L} t}=1-\frac{R}{L} t \\
& 1-e^{-\frac{R}{L} t}=1-\left(1-\frac{R}{L} t\right)=\frac{R}{L} t \\
& e^{\frac{R}{L} \varepsilon}-1=1+\frac{R}{L} \varepsilon-1=\frac{R}{L} \varepsilon
\end{aligned}
\]

\section*{Narrow Pulse Approximation Continued}
\[
\begin{aligned}
& \text { Applying the approximation for } e^{x}, V s=1 \text { (the unit impulse function) and } \alpha=\mathrm{R} / \mathrm{L} \\
& 0, \quad \text { for } t<0 \\
& i(t)=\left\{\begin{array}{c}
=\left\{\begin{array}{c} 
\\
(V s / R)(1 / \varepsilon)\left[\left(1-e^{-R / L t}\right)\right]=(V s / R)(1 / \varepsilon)(\mathrm{R} / \mathrm{Lt})=(V S / R)(\mathrm{R} / \mathrm{L} t / \varepsilon), \text { for } 0 \leq t<\varepsilon \\
\left.(V s / R)(1 / \varepsilon)\left[\left(e^{+R / L \varepsilon}-1\right) e^{-R L L}\right)\right]=(V s / R)(1 / e)(\mathrm{R} / \mathrm{L} \varepsilon) e^{-R / L t}, \text { for } t>\varepsilon
\end{array}\right. \\
0, \quad \text { for } t<0
\end{array}\right. \\
& i(t)=\left\{\begin{array}{c}
(1 / R)(\mathrm{R} / \mathrm{L} t / \varepsilon)=\mathrm{R} / \mathrm{L} / R=1 / L, \text { for } 0 \leq t<\varepsilon \\
(1 / R) \mathrm{R} / \mathrm{L} e^{-\mathrm{R} / \mathrm{L} t}, \text { for } t>\varepsilon
\end{array}\right. \\
& h(t)=\lim _{\varepsilon \rightarrow 0} i(t)=\frac{R / L}{R} e^{-R / L t} u(t)=\frac{1}{L} e^{-R / L t} u(t)
\end{aligned}
\]

\section*{Differentiating the Unit Step function}

The response due to a Unit Step function is \(i(t)=V s / R\left(1-e^{-a t}\right) u(t)\) and since
\[
\delta(t)=\frac{d u(t)}{d t}, \text { then } h(t)=\frac{d i(t)}{d t}
\]
\[
i(t)=\frac{1}{R}\left(1-e^{-\alpha t}\right) u(t)
\]
\[
h(t)=\frac{d i(t)}{d t}=\frac{1}{R} \frac{d}{d t}\left(1-e^{-\alpha t}\right) u(t)=\frac{1}{R} \frac{d}{d t}\left[u(t)-e^{-\alpha t} u(t)\right]=\frac{1}{R}\left[\frac{d}{d t} u(t)-\frac{d}{d t} e^{-\alpha t} u(t)\right]
\]
\[
=\frac{1}{R}\left[\delta(t)-\left\{u(t) \frac{d}{d t} e^{-\alpha t}+e^{-\alpha t} \frac{d}{d t} u(t)\right\}\right]=\frac{1}{R}\left[\delta(t)-\left\{-\alpha e^{-\alpha t} u(t)+e^{-\alpha t} \delta(t)\right\}\right]
\]
\[
h(t)=\frac{1}{R}\left[\delta(t)+\alpha e^{-\alpha t} u(t)-e^{-\alpha t} \delta(t)\right]
\]
\[
=\frac{1}{R}\left[\left(1-e^{-\alpha t}\right) \delta(t)+\alpha e^{-\alpha t} u(t)\right]
\]
\[
=\frac{1}{R} \alpha e^{-\alpha t} u(t)
\]

\section*{Convolution for Discrete Systems}
- For an LTI system, let's define \(h[n]\) as the system response to a unit impulse source, \(\delta[n]\).
- \(\delta[n]=1, n=0\) and 0 for \(n \neq 0\)
- We have:
\[
\begin{aligned}
& x[n]=\Sigma x[m] \delta[n-m] \\
& y[n]=\Sigma x[m] h[n-m]
\end{aligned}
\]
- In addition the same convolution properties hold:
- Commutative
\[
\begin{array}{lc}
\text { - Commutative } & f_{1}[n] \otimes f_{2}[n]=f_{2}[n] \otimes f_{1}[n] \\
\text { - Associative } & f_{1}[n] \otimes\left\{f_{2}[n] \otimes f_{3}[n]\right\}=\left\{f_{1}[n] \otimes f_{2}[n]\right\} \otimes f_{3}[n] \\
\text { - Distributive } & f_{1}[n] \otimes\left\{f_{2}[n]+f_{3}[n]\right\}=\left\{f_{1}[n] \otimes f_{2}[n]\right\}+\left\{f_{1}[n] \otimes f_{3}[t]\right\}
\end{array}
\]

\section*{Stability of Systems}
- If a system is stable, then if the input is bounded then the output must be bounded i.e., Bounded Input, Bounded Output (BIBO), the following must be true:
\[
\begin{gathered}
x(t)<\infty\{x[n]<\infty\}, \text { then } y(t)<\infty\{y[n]<\infty\} \\
y(t)=\int h(\tau) x(t-\tau) d \tau<\int h(\tau) x_{\max } d \tau=x_{\max } \int h(\tau) d \tau<\infty
\end{gathered}
\]
\[
\left\{y[n]=\sum h[m] x[n-m]=x_{\max } \sum h[m]<\infty\right\}
\]

OR
\[
\int h(\tau) d \tau<\infty\left\{\sum h[m]<\infty\right\}
\]
- However, this is not always the case.
- Positive Feedback causes instability

\section*{What is needed for BIBO}
- For a continuous time system, the poles of \(H(p)\) must lie within the left hand complex plane and not on the imaginary axis such that \(\operatorname{Re} s_{i}<0\) where \(s_{i}\) are the poles of \(H(p)\). This will assure that the free response will be damped and not grow exponentially. THIS IS WHY WE STUDIED SOLUTIONS OF LINEAR ODE IN TERMS OF SOURCE-FREE AND SOURCE COMPONENTS.
- THIS IMPLIES THAT H(p) AND THE IMPULSE RESPONSE, \(h(t)\), MAY BE RELATED.

\section*{What is needed for BIBO}

For a discrete time system, the eigenvalues of \(h[n]\) must lie within the unit circle such that \(z_{i}<1\) where \(z_{i}\) are the eigenvalues of \(h[n]=\sum_{i} A_{i} z_{i}{ }^{n}\).
This will assure that free response will not diverge and \(\sum_{n} h[n]=\sum_{n} \sum_{i} A_{i} z_{i}^{n}<\infty\).
Using the formula for the partial sums of a geometric series,
where \(N\) is the number of roots of the Characteristic Equation
\[
\begin{aligned}
& \lim _{L \rightarrow \infty} \sum_{n=0}^{L-1} h[n]=\lim _{L \rightarrow \infty} \sum_{n=0}^{L-1} \sum_{i=1}^{N} z_{i}^{n}=\lim _{L \rightarrow \infty} \sum_{i=1}^{N} \sum_{n=0}^{L-1} z_{i}^{n}=\lim _{L \rightarrow \infty} \sum_{i=1}^{N} \frac{1-z_{i}^{L}}{1-z_{i}} \rightarrow \sum_{i=1}^{N} \frac{1}{1-z_{i}} ; \text { provided }\left|z_{i}\right|<1 \\
& \text { if }\left|z_{i}\right| \geq 1, \lim _{L \rightarrow \infty} \sum_{n=0}^{L-1} \sum_{i=1}^{N} z_{i}^{n}=\lim _{L \rightarrow \infty} \sum_{i=1}^{N}\left|\frac{1-z_{i}^{L}}{1-z_{i}}\right| \rightarrow \infty \\
& z_{i}=\left|z_{i}\right| \angle \operatorname{angle}\left(z_{i}\right) \\
& z_{i}^{L}=\left|z_{i}\right|^{L} \angle\left(L \times \operatorname{angle}\left(z_{i}\right)\right) \\
& \lim _{L \rightarrow \infty} z_{i}^{L}=\lim _{L \rightarrow \infty}\left\{\left|z_{i}\right|^{L} \angle\left(L \times \operatorname{angle}\left(z_{i}\right)\right)\right\}=\lim _{L \rightarrow \infty}\left\{\left|z_{i}\right|^{L}\right\} \angle\left\{-\pi<L \times \operatorname{angle}\left(z_{i}\right) \leq \pi\right\} \\
& \lim _{L \rightarrow \infty}\left\{\left|z_{i}\right|^{L}\right\}=0 ; z_{i}<1 \text { and } \lim _{L \rightarrow \infty}\left\{\left|z_{i}\right|^{L}\right\} \rightarrow \infty ; z_{i} \geq 1
\end{aligned}
\]

\section*{Homework}
- Convolution Verify your all your results of these convolution problems using Matlab and its conv function.
- \(\quad\) Problem (1)
- Assume that a system response is given by the following:

- Sketch the response to a) \(u(t)\), b) \(u(t)-u(t-a)\) for \(\mathrm{a}=0.5, \mathrm{a}=1\), and \(\mathrm{a}=5\), and c) evaluate \(e^{-t} u(t)\) at \(t=1\) and \(t=2\)
- Problem (2)
- Assume that a system response is given by the following:

- Evaluate the response to \(t e^{-t} u(t)\) at \(t=1\) and \(t=3\)

\section*{Homework}
- Stability
- Determine the stability of the following systems with poles in the complex plane, describe the form of the transient response:



- 2CT.3.1, 2CT.3.2```

