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Convolution

Lecture #6
2CT.3 – 8
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Definition
Convolution is an operation on two functions of time.
The following integral is the definition of  convolving  f1(t) with f2 (t):

g(t)  
 f1 ( ) f2(t  )d

This says, first take f2 (t) and convolve it doing the following:
1. flip it in time : f2 (t) f2 (t)
2. displace (shift) it in time by the amount   seconds: f2 (t) f2 (  t)
3. take the convolved  f2 (t) and multiple it by f1(t)
4. integrate with respect to   over all time which will produce 
another function, g(t),  of time, t.
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Properties of Convolution

• First some shorthand: 

• Commutative:

• Associative:  

• Distributive: 

)()()()( 2121 tftfdtff  

)()]()([)]()([)( 321321 tftftftftftf 

)()()()( 1221 tftftftf 

)]()([)]()([)]()([)( 3121321 tftftftftftftf 
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A Graphical Example of How to Perform a 
Convolution

T

A

f () =A(1- / T)

-(2T-t)

B
h(t-)

t-2T

B

h(-)



2T

B
h()



C  f ( )h(t  )d
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A Graphical Example of How to Perform a 
Convolution

We need to look at 5 cases: 

1) t < 0 For this case 1, C=0 since there is no overlap.

2) 2) 0 < t < T 

3) 3)T < t < 2T,      

4) 2T < t < 3T

5) t > 3T For this case 1, C=0 since there is no overlap.

B
Case 1: t <0

-(2T-t) t τT

A

Case 5: t >3T

τT

A B

t-(2T-t)
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Graphical Convolution Example Continued

Case 3: T < t < 2T

f (t) h(t-t), 2T < t < 3T

T

A

2T 3T

B

t-(2T-t)

Case 2: 0 < t < T

Case 4: 2T < t < 3T

f (t) h(t-t), 0 < t < T

T

A

2T

B

t-(2T-t)

f (t) h(t-), T < t < 2T

T

A

2T

B

t-(2T-t)

)
2

()1(
2

0 T
ttABd

T
ABC

t
  



T t

ABT / 2

2
)

2
()1(

2

0

ABT
T

TTABd
T

ABC
T

  


T t

ABT  / 2

2T

]
2

2)2(
)2(

2
[

)1(
)2(

T
tT

tT
T

AB

d
T

ABC
T

tT




 





T t

ABT/2

2T 3T
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Matlab Code

clear all;
endpulse=2;
ts=.001;
endpoint=10;
n=-endpoint:ts:endpoint;
nn=-endpoint*2:ts:endpoint*2;
pulser=(n>=0)&(n<=endpulse);
pulse=1*pulser;
tripulse=(n>=0)&(n<=1);
tri=(1-n).*tripulse;
subplot(2,1,1)
plot(n,tri,'r',n,pulse,'b');
title('Signals');
xlabel('Time (Seconds)');
axis([-1 10 min([min(tri) min(pulse)]) 1.1*max([max(tri) max(pulse)])]);
c=conv(pulse,tri)*ts;
subplot(2,1,2)
plot(nn,c);
title('Convolution');
xlabel('Shift (Seconds)');
axis([-1 10 min(c) 1.1*max(c)]);
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0

0.5

1

Signals

Time (Seconds)
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0
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0.4

Convolution

Shift (Seconds)
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Integration of Convolution Integral

2 2
00

2 2

2 2

2 2

2

Case 2: 0
1 1(1 ) ( ) (1 ) | ( ) {(1 ) 1}
2 2

1 2 1 2( ) {(1 ) 1} ( ) { }
2 2
1 2( ) { } { }
2 2

Case 3: 2  (From the integration from Case 2)

(1
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t T
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T T T
t t t tAB T AB T

T T T T
t t tAB T AB t

T T T
T t T
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 



 

        

        

     

 

 



2
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00
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2
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2 2
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Case 4: 2 3  (From the integration from Case 2)
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2 2
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Convolution and Systems

• For an LTI system, let’s define h(t) as the 
system response to a unit impulse source,      .

• Then the following must be true:

                        x(t)
LTI

y(t) x(t) input to the system yields output y(t) 

                         (t)
LTI

h(t)  (t) input to the system yields output h(t)

                (t  k)
LTI

h(t  k) time invariance, time shift by k

      x(k) (t  k)
LTI

x(k)h(t  k) scalar, multiply by x(k)

 x(k) (t  k)
k
 

LTI

x(k)h(t  k)
k
  superposition, add up for all value of time shift k

 x(k) (t  k)
k
 

LTI

x(k)h(t  k)
k
  scalar, multiply by 

 (t)
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Convolution and Systems Continued

x(k) (t  k)
k
  x(k)h(t  k)

k


x(t) x( )h(t  )d

  y(t)

0

Right Side Equals

lim ( ) ( )  approaches ( ) ( )
kk

k

x k h t k x h t d




  




     
Construct y(t) as the sum of k slices of the 
response due to an unit impulse function: 
x(kΔ)h(t-kΔ). The integral on the right is the 
convolution of x(t) and h(t).

Construct x(t) as the sum of k unit impulse 
slices. The first expression represents the k
slices of the source totaled as k approaches 
infinity.

Left Side Equals
lim
0
k
k

x(k) (t  k)  
k
 approaches x( ) (t  )d  x(t)




Recall : f (t) (t  )dt  f ( )





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Convolution and Systems Continued

y(t)  x( )h(t  )d



This result is very important since it says that if one knows the 
impulse response of a system then the output response for any 
given input source can be found by convolving the input with the 
impulse response.
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Impulse Response and Causality
    y(to ) does not depend on x(ti ) that occur at times after to , ti  > to.

y(to)
y(t)

x(ti)

toAllowable 

Values of ti

    y(to )  h( )x(




 to  )d  h( )x(


0

 to  )d  h( )x(
0



 to  )d  break up into 2 integrals: 

      one for positive    and one for negative 

    For the positive   integral h( )x(
0



 to  )d ,  if   is positive, then to   to , 

      and for x(ti  to  )  x(to  ) we have ti  to  

    For the negative   integral h( )x(


0

 to  )d ,if    is negative,then to   to , 

      and for x(ti  to  )  x(to  ) we have ti  to   THIS CAN'T HAPPEN IN A REAL CAUSAL SYSTEM.

    Therefore for y(t) to be causal this h( )x(


0

 to  )d  must be zero and for this to happen h(t)  0,t  0.
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Calculating the Unit Impulse Response, h(t)

Vs

1 2 R

Li(t)

Let’s first look at 2 methods:

1. Narrow Pulse approximation

2. Differentiating u(t)

Better Methods to Come
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Narrow Pulse Approximation

So then let’s first look 
at the response to u(t):

dt

tdi
LRtituVs

)(
)()( 

i(t) = Vs/R (1-e-(R/L)t)u(t)

Now we construct the narrow 
pulse response:

i(t)  Vs
R

1


{(1 e
( R

L
)t

)u(t)

                         (1 e
( R

L
)(t )

)u(t   )}

  width of the pulse

1

 height of the pulse

As   0, the narrow pulse = 1


{u(t)  u(t   )} (t)
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Narrow Pulse Approximation Continued
i(t) = (Vs/R)(1/ε) [(1-e-(R/L)t)u(t) – (1-e-(R/L)(t-ε))u(t-ε)]

OR

0,       for t <0

i(t)=              (Vs/R)(1/ε) [(1-e-(R/L)t)] for 0 ≤ t < ε

(Vs/R)(1/ε) [(1-e-(R/L)t)]– (1-e-R/L(t-ε))],  for t > ε

OR

0,       for t <0

i(t)=         (Vs/R)(1/ε) [(1-e-(R/L)t)],   for 0 ≤ t < ε

(Vs/R)(1/ε) [(eR/Lε – 1)e-(R/L)t)],  for t > ε
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Taylor Series Approximation for ex

eax 
(ax)0

0!


(ax)1

1!


(ax)2

2!


(ax)3

3!
 ...

for  x   0, we can drop the higher order terms:

eax 
(ax)0

0!


(ax)1

1!
1 ax

e


R
L

t
1 R

L
t

1 e


R
L

t
1 (1 R

L
t)  R

L
t

e
R
L

11 R

L
 1 R

L

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Narrow Pulse Approximation Continued
Applying the approximation for ex , Vs=1 (the unit impulse function) and α = R/L

0,       for t < 0

i(t)=    (Vs/R)(1/ε) [(1-e-R/Lt)]= (Vs/R)(1/ε)(R/Lt)=(Vs/R)(R/L t/ε),   for 0 ≤ t < ε

(Vs/R)(1/ε) [(e+R/Lε – 1)e-R/Lt)]= (Vs/R)(1/e)(R/L ε)e-R/Lt,  for t > ε

0,       for t < 0

i(t)=                              (1/R)(R/L t/ε)= R/L /R=1/L,   for 0 ≤ t <ε

(1/R) R/L e- R/L t,  for t > ε

/ /

0

/ 1( ) ( ) ( ) ( )lim R Lt R LtR Lh t i t e u t e u t
R L

 



  
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Differentiating the Unit Step function
The response due to a Unit Step function is i(t) = Vs/R (1-e-αt)u(t) 

and since
 (t)  du(t)

dt
,  then h(t)   di(t)

dt

i(t)  1
R

(1 e t )u(t)

h(t)  di(t)
dt


1
R

d
dt

(1 e t )u(t)  1
R

d
dt

[u(t)  e tu(t)]  1
R

[ d
dt

u(t)  d
dt

etu(t)]


1
R

[ (t) {u(t) d
dt

e t  e t d
dt

u(t)}]  1
R

[ (t) {etu(t)  et (t)}]

h(t)  1
R

[ (t) e tu(t)  e t (t)]


1
R

[(1 e t ) (t) e tu(t)]


1
R
e tu(t)
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Convolution for Discrete Systems

• For an LTI system, let’s define h[n] as the system 
response to a unit impulse source, δ[n].

• δ[n]=1, n=0 and 0 for n ≠ 0
• We have: 

x[n]= Σ x[m]δ[n-m]
y[n]=Σ x[m] h[n-m]

• In addition the same convolution properties hold:
– Commutative 
– Associative
– Distributive

][][][][ 1221 nfnfnfnf 
][]}[][{]}[][{][ 321321 nfnfnfnfnfnf 
]}[][{]}[][{]}[][{][ 3121321 tfnfnfnfnfnfnf 
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Stability of Systems
• If a system is stable, then if the input is bounded 

then the output must be bounded i.e., Bounded 
Input, Bounded Output (BIBO), the following 
must be true:

OR

• However, this is not always the case.
– Positive Feedback causes instability

}][{  )( then },][{  )(  nytynxtx

    dhxdxhdtxhty )()()()()( maxmax

  }][{   )( mhdh 

}][][][][{ max   mhxmnxmhny
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What is needed for BIBO
• For a continuous time system, the poles of H(p) must 

lie within the left hand complex plane and not on the 
imaginary axis such that Re si < 0 where si are the 
poles of H(p).  This will assure that the free response 
will be damped and not grow exponentially.   THIS 
IS WHY WE STUDIED SOLUTIONS OF LINEAR 
ODE IN TERMS OF SOURCE-FREE AND 
SOURCE COMPONENTS.

• THIS IMPLIES THAT H(p) AND THE IMPULSE 
RESPONSE, h(t), MAY BE RELATED.
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What is needed for BIBO
For a discrete time system, the eigenvalues of  must lie within the unit circle
such that  1 where  are the eigenvalues of .

This will assure that free response 

[ ]
[

will not diverge
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Homework
• Convolution  Verify your all your results of these 

convolution problems using Matlab and its conv function.
– Problem (1) 

• Assume that a system response is given by the following:

• Sketch the response to a) u(t), b) u(t)-u(t-a) for a=0.5, a=1, and a=5, 
and c) evaluate e-t u(t) at t=1 and t=2

– Problem (2)
• Assume that a system response is given by the following:

• Evaluate the response to te-t u(t) at t=1 and t=3

1

1

0

t

h(t)

1

1

0

t

h(t)

3

1/3
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Homework

• Stability
– Determine the stability of the following systems with 

poles in the complex plane, describe the form of the 
transient response:

• 2CT.3.1, 2CT.3.2 

Imaginary axis

Real axis

Imaginary axis

Real axis

Imaginary axis

Real axis


