Signal Analysis

Lecture \#7
 5CT.1-2,4

How to Analyze Different Classes of Signals

- Classes of Signals
- Periodic vs. Non Periodic
- Continuous vs. Discrete
- Bounded vs. Non Bounded
- Symmetries
- Use Mathematical Transformations
- such as Fourier Series and Fourier, Laplace, \& Z transforms
- to analyze Signal Properties
- Frequencies which make up signal: Spectrum
- Energy Content
- to analyze and design systems which process these signals
- Filters
- etc

Fourier Series

- A method for approximating a signal
- A means to analyze a signal
- Applies to either continuous or discrete signals
- Need to understand/review some background, foundations, and assumptions

Related Sources Theorem

- If we know the response to a source, then the response to the derivative/integral of the source is the derivative/integration of the response to the source.
- An intuitive proof:

$$
\begin{aligned}
& x(t) \rightarrow y(t) \\
& \frac{d x(t)}{d t} \rightarrow \frac{d y(t)}{d t} \\
& A(p) y(t)=B(p) x(t) \\
& \frac{d[A(p) y(t)]}{d t}=\frac{d[B(p) x(t)]}{d t} \\
& A(p) \frac{d y(t)}{d t}=B(p) \frac{d x(t)}{d t} \\
& \int x(t) d t \rightarrow \int y(t) d t \\
& \int A(p) y(t) d t=\int B(p) x(t) d t \\
& A(p) \int y(t) d t=B(p) \int x(t) d t
\end{aligned}
$$

Taylor Series Approximation of a Signal

- From calculus, if we have a single-valued function that is continuous and has continuous derivatives, it can be approximated as

$$
\begin{aligned}
f(t) \approx f_{a}(t)= & f\left(t_{o}\right)+\left.\frac{d f(t)}{d t}\right|_{t=t_{0}}\left(t-t_{o}\right)+\left.\frac{d^{2} f(t)}{d t^{2}}\right|_{t=t_{0}}\left(t-t_{o}\right)^{2}+\cdots \\
& \cdots+\left.\frac{d^{n-1} f(t)}{d t^{n-1}}\right|_{t=t_{o}}\left(t-t_{o}\right)^{n-1}+R_{n}(t)
\end{aligned}
$$

- Assuming that $f(t)$ is the source function, using the related sources theorem, we know the response to a constant source, then we can get the response to any function t^{n} by successful integration and then use superposition to get the full response due to $f_{a}(t)$
- $\quad R_{n}(t)$ can be considered to be the error between $f(t)$ and $f_{a}(t)$ and gets smaller as more terms are added

An Example

$$
f(t)=\cos \frac{\pi t}{2} ; f_{a}(t)=a_{0}+a_{1} t+a_{2} t^{2}
$$

- How do we choose the coefficients, the a_{i} ' s , to get best approximation of $f(t)$ within the interval $-1<t<$ +1 ?

$$
f(t)-f_{a}(t)=0
$$

- Let' s choose them that at $t=-1,0,+1$,

$$
\begin{aligned}
& f_{a}(-1)=a_{o}-a_{1}+a_{2}=\cos \frac{-\pi}{2}=0 \\
& f_{a}(0)=a_{o}=1 \\
& f_{a}(1)=a_{o}+a_{1}+a_{2}=\cos \frac{\pi}{2}=0 \\
& a_{o}=1, a_{1}=0, a_{2}=-1 \\
& f_{a}(t)=1-t^{2}
\end{aligned}
$$

$$
\varepsilon(t)=\cos \frac{\pi t}{2}-\left(1-t^{2}\right)
$$

The Error Between $f(t) \boldsymbol{\&} f_{a}(t)$

- Object: Choose the a_{i} 's to minimize the error $\varepsilon(t)$ $=f(t)-f_{a}(t)$ over the interval of the approximation, but
- Average error is not a good criterion since we can have large deviations which cancel each other out. Example: $\varepsilon(t)=\sin t$ over the period 0 to 2π.
- Instead try to minimize the average value of

$$
E^{2}=\frac{1}{t_{1}-t_{2}} \int \varepsilon^{2} d t=\frac{1}{t_{1}-t_{2}} \int\left(f(t)-f_{a}(t)\right)^{2} d t
$$

which is known as the mean squared error.

An Example

$\varepsilon(t)=f(t)-\left(a_{0}+a_{1} t+a_{2} t^{2}\right)$ over the interval $-1<t<+1$
$E^{2}=\frac{1}{2} \int_{-1}^{+1}[f(t)]^{2} d t-\int_{-1}^{+1}\left(a_{0}+a_{1} t+a_{2} t^{2}\right) f(t) d t+\frac{1}{2} \int_{-1}^{+1}\left(a_{0}+a_{1} t+a_{2} t^{2}\right)^{2} d t$
To choose the a_{k} 's to minimize the mean squared error, we must have: $\frac{\partial E^{2}}{\partial a_{k}}=0, \frac{\partial^{2} E^{2}}{\partial a_{k}{ }^{2}}>0$
$\frac{\partial E^{2}}{\partial a_{0}}=-\int_{-1}^{+1} f(t) d t+\frac{1}{2} \frac{\partial}{\partial a_{o}}\left[\int_{-1}^{+1}\left(a_{0}+a_{1} t+a_{2} t^{2}\right)^{2} d t=-\int_{-1}^{+1} f(t) d t+2 a_{0}+\frac{2}{3} a_{2}=0 \quad \frac{\partial^{2} E^{2}}{\partial a_{o}{ }^{2}}=2\right.$
$\frac{\partial E^{2}}{\partial a_{1}}=-\int_{-1}^{+1} f(t) d t+\frac{1}{2} \frac{\partial}{\partial a_{1}}\left[\int_{-1}^{+1}\left(a_{0}+a_{1} t+a_{2} t^{2}\right)^{2} d t=-\int_{-1}^{+1} f(t) d t+\frac{2}{3} a_{1}=0 \quad \frac{\partial^{2} E^{2}}{\partial a_{1}^{2}}=\frac{2}{3}\right.$
$\frac{\partial E^{2}}{\partial a_{2}}=-\int_{-1}^{+1} t^{2} f(t) d t+\frac{1}{2} \frac{\partial}{\partial a_{2}}\left[\int_{-1}^{+1}\left(a_{0}+a_{1} t+a_{2} t^{2}\right)^{2} d t=-\int_{-1}^{+1} f(t) d t+\frac{2}{3} a_{0}+\frac{2}{5} a_{2}=0 \quad \frac{\partial^{2} E^{2}}{\partial a_{2}^{2}}=\frac{2}{5}\right.$
Since the second partials are positive we will have a minimum. The minimum is $E^{2}=.017$. But can we do better?

Can we do better?

- Yes, choose more terms, $f_{a}(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}$
- Or better yet, choose different approximating functions that are orthogonal in the interval, i.e., choose

$$
\begin{gathered}
f_{a}(t)=A_{0} g_{0}(t)+A_{1} g_{1}(t)+A_{2} g_{2}(t)+\cdots+A_{n} g_{n}(t) \\
\text { such that } \\
\int_{h_{1}}^{2} g_{k}(t) g_{j}(t) d t=0 \text { for } k \neq j \\
\int_{h_{1}}^{2} g_{k}(t) g_{j}(t) d t=G_{k} \text { for } k=j
\end{gathered}
$$

Orthogonal Functions

Using $f_{a}(t)=A_{0} g_{0}(t)+A_{1} g_{l}(t)+A_{2} g_{2}(t)+\cdots+A_{n} g_{n}(t)$ over the interval T and choose the A_{n} 's to minimize E^{2}, we have:

$$
\begin{aligned}
E^{2} & =\frac{1}{T} \int_{T}\left[f(t)-f_{a}(t)\right]^{2} d t \\
& =\frac{1}{T}\left[\int_{T} f(t)^{2} d t-2 \int_{T} f_{a}(t) f(t) d t+\int_{T} f_{a}(t)^{2} d t\right] \\
\frac{\partial E^{2}}{\partial A_{k}} & =\frac{1}{T} \frac{\partial}{\partial A_{k}}\left[-2 \int_{T} f_{a}(t) f(t) d t+\int_{T} f_{a}(t)^{2} d t\right]=0
\end{aligned}
$$

Where $\frac{\partial E^{2}}{\partial A_{k}}$ represents a set $k+1$ simultaneous equations
Note: $\int f(t)^{2} d t$ is sometimes called the quadratic content or energy associated with $f(t)$ in interval T

Coefficients of Orthogonal Functions

It can be shown that the first integral of each set of the $k+1$ equations is:

$$
\begin{aligned}
& \frac{1}{T} \frac{\partial}{\partial A_{k}}\left(-2 \int_{T} f_{a}(t) f(t) d t\right) \\
& =\frac{1}{T} \frac{\partial}{\partial A_{k}}\left[-2 \int_{T}\left(A_{0} g_{0}(t)+A_{1} g_{1}(t)+\cdots+A_{n} g_{n}(t)\right) f(t) d t\right] \\
& =\frac{-2}{T}\left[\int_{T} g_{k}(t) f(t) d t\right]
\end{aligned}
$$

And applying the orthogonal property to the second integral, we have :

$$
\begin{aligned}
& \frac{1}{T} \frac{\partial}{\partial A_{k}} \int_{T} f_{a}(t)^{2} d t=\frac{1}{T} \frac{\partial}{\partial A_{k}} \int_{T}\left(A_{0} g_{0}(t)+A_{1} g_{1}(t)+\cdots+A_{n} g_{n}(t)\right)^{2} d t \\
& =\frac{1}{T} 2 \int_{T}\left(A_{0} g_{0}(t)+A_{1} g_{1}(t)+\cdots+A_{n} g_{n}(t)\right) g_{k}(t) d t=A_{k} \frac{1}{T} 2 \int_{T} g_{k}(t)^{2} d t=A_{k} \frac{2}{T} G_{k}
\end{aligned}
$$

Coefficients of Orthogonal Functions

$$
\frac{1}{T} \frac{\partial}{\partial A_{k}}\left[-2 \int_{T} f_{a}(t) f(t) d t+\int_{T} f_{a}(t)^{2} d t\right]
$$

$$
=\frac{-2}{T}\left[\int_{T} g_{k}(t) f(t) d t\right]+A_{k} \frac{1}{T} 2 \int_{T} g_{k}(t)^{2} d t
$$

$$
=\frac{-2}{T}\left[\int_{T} g_{k}(t) f(t) d t\right]+A_{k} \frac{2}{T} G_{k}=0
$$

And, at last we have: $\quad A_{k}=\frac{\int_{T} g_{k}(t) f(t) d t}{\int_{T}\left[g_{k}(t)\right]^{2} d t}=\frac{\int_{T} g_{k}(t) f(t) d t}{G_{k}}$

What Functions are Orthogonal

- There is a class of polynomials which form an orthogonal set
- But a better choice are the sinusoidal functions:

$$
\begin{aligned}
& f_{a}(t)=C_{0}+\sum_{k=1}^{N}\left[A_{k} \cos \left(\frac{2 \pi k t}{T}\right)+B_{k} \sin \left(\frac{2 \pi k t}{T}\right)\right] \\
& =C_{0}+\sum_{k=1}^{N} C_{k} \cos \left(\frac{2 \pi k t}{T}+\psi_{k}\right) \\
& \text { where } C_{k}=\sqrt{A_{k}^{2}+B_{k}^{2}} \\
& \qquad \psi_{k}=\tan ^{-1}\left(\frac{-B_{k}}{A_{k}}\right)
\end{aligned}
$$

Some Properties of Sinusoids Which Make Things Neater

Recall that $e^{j t}=\cos t+j \sin t$

$$
\begin{aligned}
& \cos t=1 / 2\left(e^{j t}+e^{-j t}\right) \\
& \sin t=1 /(2 j)\left(e^{j t_{-}} e^{-j t}\right)
\end{aligned}
$$

And for the complex number $\boldsymbol{s}=\alpha+j \omega$, there is its conjugate $\boldsymbol{s}^{*}=\alpha-j \omega$. Furthermore, $\boldsymbol{s}+\boldsymbol{s}^{*}=2 \operatorname{Re}[\boldsymbol{s}]=2 \alpha$

Therefore, let's rewrite $f_{a}(t)$ in terms of complex series of $e^{j o t}$ functions and their conjugates.

We now call this the Fourier Series of a function within an interval of \boldsymbol{T}.

Fourier Series

$$
\begin{aligned}
& \begin{aligned}
& f_{a}(t)=C_{0}+\sum_{k=1}^{N} C_{k} \cos \left(\frac{2 \pi k t}{T}+\psi_{k}\right) \\
&=C_{0}+C_{1} \cos \left(\frac{2 \pi 1 t}{T}+\psi_{1}\right)+\cdots+C_{k} \cos \left(\frac{2 \pi k t}{T}+\psi_{k}\right) \cdots+C_{N} \cos \left(\frac{2 \pi N t}{T}+\psi_{N}\right) \text { Expanding the sum } \\
&=C_{0}+\frac{C_{1}}{2} e^{j\left(\frac{2 \pi 1 t}{T}+\psi_{1}\right)}+\frac{C_{1}}{2} e^{-j\left(\frac{2 \pi 1 t}{T}+\psi_{1}\right)}+\cdots+\frac{C_{k}}{2} e^{j\left(\frac{2 \pi k t}{T}+\psi_{k}\right)}+\frac{C_{k}}{2} e^{-j\left(\frac{2 \pi k t}{T}+\psi_{k}\right)}+ \\
&+\cdots+\frac{C_{N}}{2} e^{j\left(\frac{2 \pi N t}{T}+\psi_{N}\right)}+\frac{C_{N}}{2} e^{-j\left(\frac{2 N k t}{T}+\psi_{N}\right)} \text { Using Euler's formula. } \\
& \begin{aligned}
=C_{0}+\frac{C_{1}}{2} e^{j \psi_{1}} e^{j \frac{2 \pi 1 t}{T}}+ & +\frac{C_{1}}{2} e^{-j \psi_{1}} e^{-j \frac{2 \pi 1 t}{T}}+\cdots+\frac{C_{k}}{2} e^{j \psi_{k}} e^{j \frac{2 \pi k t}{T}}+\frac{C_{k}}{2} e^{-j \psi_{k}} e^{-j \frac{2 \pi k t}{T}}+ \\
& +\cdots+\frac{C_{N}}{2} e^{j \psi_{N}} e^{j \frac{2 \pi N t}{T}}+\frac{C_{N}}{2} e^{-j \psi_{N}} e^{-j \frac{2 \pi N t}{T}} \text { Formulation of phasors }
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Let $\mathbf{g}_{k}(\mathbf{t})=e^{\frac{j 2 \pi k t}{T}}$ and then $\mathbf{g}_{k}(\mathbf{t})^{*}=e^{\frac{-j 2 \pi k t}{T}}$ and $\mathbf{a}_{k}=\frac{C_{k}}{2} e^{j \psi_{k}}$ and then $\mathbf{a}_{k}^{*}=\frac{C_{k}}{2} e^{-j \psi_{k}}$ where $\mathbf{a}_{0}=C_{0}$

Fourier Series

$$
f_{a}(t)=a_{0}+\mathbf{a}_{1} \mathbf{g}_{1}(\mathbf{t})+\left[\mathbf{a}_{1} \mathbf{g}_{1}(\mathbf{t})\right]^{*}+\cdots+\mathbf{a}_{k} \mathbf{g}_{k}(\mathbf{t})+\left[\mathbf{a}_{k} \mathbf{g}_{k}(\mathbf{t})\right]^{*}+\cdots+\mathbf{a}_{N} \mathbf{g}_{N}(\mathbf{t})+\left[\mathbf{a}_{N} \mathbf{g}_{N}(\mathbf{t})\right]^{*}
$$

Recasting in terms of general orthogonal functions.
$=a_{0}+\sum_{k=1}^{N} \mathbf{a}_{k} \mathbf{g}_{k}(\mathbf{t})+\left[\mathbf{a}_{k} \mathbf{g}_{k}(\mathbf{t})\right] *$ Simplifying the sum.
where $\mathbf{g}_{k}(\mathbf{t})=e^{\frac{j 2 \pi k t}{T}}, \mathbf{g}_{k}(\mathbf{t})^{*}=e^{\frac{-j 2 \pi k t}{T}}, \mathbf{a}_{k}=\frac{C_{k}}{2} e^{j \psi_{k}}, \mathbf{a}_{k} *=\frac{C_{k}}{2} e^{-j \psi_{k}}, \mathbf{a}_{0}=C_{0}$
and $\mathbf{a}_{k}=\frac{\int_{t_{1}}^{t_{1}+T} f(t) \mathbf{g}_{k}(\mathbf{t})^{*} d t}{\int_{t_{1}}^{t_{1}+T} \mathbf{g}_{k}(\mathbf{t}) \mathbf{g}_{k}(\mathbf{t})^{*} d t}=\frac{1}{T} \int_{t_{1}}^{t_{1}+T} f(t) e^{\frac{-j 2 \pi k t}{T}} d t$
$f_{a}(t)=a_{0}+\sum_{k=1}^{N}\left[\mathbf{a}_{k} e^{\frac{j 2 \pi k t}{T}}+\mathbf{a}_{k} * e^{\frac{-j 2 \pi k t}{T}}\right]=\sum_{k=-N}^{N} \mathbf{a}_{k} e^{\frac{j 2 \pi k t}{T}}=C_{0}+\sum_{k=1}^{\mathrm{N}} 2 \operatorname{Re}\left[\mathbf{a}_{k} e^{\frac{j 2 \pi k t}{T}}\right]$
Note that since the magnitude of the \boldsymbol{a}_{k} coefficients are $1 / 2$ the value of the C_{k} coefficients, 2 real part is required.
$f_{a}(t)=a_{0}+\sum_{k=1}^{\mathrm{N}} C_{k} \cos \left(\frac{j 2 \pi k t}{T}+\psi_{k}\right)$, where $2 \mathbf{a}_{k}=C_{k} e^{j \psi_{k}}$ and $\mathbf{a}_{0}=C_{0}$

Homework

- Fourier Series

- Problem (3)

- Compute the Fourier Series for the function using 3 terms in the series:

$$
f(t)=1 \text { for } 0<t<\pi \text { and } f(t)=0 \text { for } \pi<t<2 \pi
$$

$$
\begin{aligned}
a_{k} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) e^{-j k t} d t=\frac{1}{2 \pi} \int_{0}^{\pi} 1 e^{-j k t} d t=\left.\left(\frac{1}{2 \pi}\right)\left(\frac{1}{-j k}\right) e^{-j k t}\right|_{0} ^{\pi}=\frac{1}{-2 \pi k j}\left(e^{-j k \pi}-1\right) \\
& =\frac{1}{-2 \pi k j} e^{-j k \pi / 2}\left(e^{-j k \pi / 2}-e^{+j k \pi / 2}\right) \\
& =\frac{\sin \frac{k \pi}{2}}{\pi k} e^{-j k \pi / 2} ; \text { for } k \neq 0 \\
a_{0} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) d t=\frac{1}{2 \pi} \int_{0}^{\pi} 1 d t=\frac{1}{2} \\
f(t) & =\frac{1}{2}+2 \sum_{1}^{N} \frac{\sin \frac{k \pi}{2}}{\pi k} \cos \left(k t-k \frac{\pi}{2}\right)
\end{aligned}
$$

Homework

- Mean Squared Error
- Problem (1)
- For our example in class, prove that $E^{2}=0.017$ for $f(t)=\cos (\pi t / 2)$
- Problem (2)
- It is desired to approximate $f(t)=\sin (t)$ in the interval $0<t<\pi / 2$ by the straight line $f_{a}(t)=m t+b$. Determine the values of m and b for a least mean square error approximation and calculate the corresponding MSE.
- Fourier Series
- Problem (3)
- Compute the Fourier Series for the function using 3 terms in the series:

$$
f(t)=1 \text { for } 0<t<\pi, f(t)=0 \text { for } \pi<t<2 \pi
$$

- Problem (4)
- Compute the Fourier Series for the function using 4 terms in the series:

$$
f(t)=t \text { for } 0<t<3
$$

- 5CT.1.1, 5CT.1.2

