Signal Analysis

Lecture #7
5CT.1-2,4
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How to Analyze Different Classes of Signals

e (Classes of Signals
— Periodic vs. Non Periodic
— Continuous vs. Discrete
— Bounded vs. Non Bounded
— Symmetries

« Use Mathematical Transformations
— such as Fourier Series and Fourier, Laplace, & Z transforms

— to analyze Signal Properties
» Frequencies which make up signal: Spectrum
* Energy Content

— to analyze and design systems which process these signals
* Filters

* etc
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Fourier Series

A method for approximating a signal
A means to analyze a signal

Applies to either continuous or discrete
signals

Need to understand/review some
background, foundations, and assumptions
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Related Sources Theorem

* If we know the response to x(1) = y()
a source, then the response ax (1) IR dy(t)
to the derivative/integral of dt dt
the source is the A(p)y(t) = B(p)x(1)
derivative/integration of d[A(p)y®)]  d[B(p)x(1)]
the response to the source. a

e An intuitive proof: A( p)? _ B(») d);(:)

[x(H)dt — [ y(t)dt
[ a(p)yyde = [ B(p)x(t)at
A(p)| y(dt = B(p)| x(t)de
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Taylor Series Approximation of a Signal

* From calculus, if we have a single-valued function that 1s continuous
and has continuous derivatives, it can be approximated as

F@= 0= 1)+ T 7

L4 lf (t)
dt”

« Assuming that () 1s the source function, using the related sources
theorem, we know the response to a constant source, then we can get
the response to any function #’ by successful integration and then use
superposition to get the full response due to £, (7)

* R (?) can be considered to be the error between f(¢) and £ (¢) and gets
smaller as more terms are added

(t—t)+

t=t, t=t,

(t—t )’“+R (1)

t=t,
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An Example

f(t)—cosﬂ f)=a,+at+at

« How do we choose the coefficients, the a; s, to get
best approximation of f(z) within the interval —1 <7<

o (O~ f.()=0

&(t) :cos%t—(l—tz)

e Let’ s choose them that at = -1,0,+1,

f(-)=a —a +a, =cos%=0

f(0)=a =1
fa(l):ao+al+a2=cos%=0

a =1,a =0,a,=-1

[@O)=1-r
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The Error Between f(t) & f (1)

* Object: Choose the a; s to minimize the error g ()
= f(t) — f.(?) over the interval of the
approximation, but

— Average error 1s not a good criterion since we can have
large deviations which cancel each other out. Example:
¢ (f) = sin t over the period 0 to2 77 .

 Instead try to minimize the average value of

L [2di=——[(f ()~ £,()dr

tl _tz tl _tz

E? =

which 1s known as the mean squared error.
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An Example

e(t)= f(t)—(a, +at+a,t’) over the interval —1<¢<+1

+1

=—j[f(t)] dt— [ (ay+ait+a,t*) f(O)dt +— _[(a0+at+a2t )dt

-1
To choose the g, s to mlmmlze the mean squared error, we
must have: OE’ _0, O'E

oa o0 >0
ggz _ —j}f(t)d +%%[j(ao +at+ayt’)dt = —jf(t)dt - 2a0+%a2: 0 aazaE; =2
%glz = —Z of (t)dt + ; aa [i(a0 +at+at’)dt= —j}tf(t)dt +%a1: 0 ijf; :%
%gj = —f £ f(@t)dt +~ 5 aa []I(ao +at+at’)dt= —]jtzf(t)dt+%ao+%a2: 0 ‘;E; :§

Since the second partials are positive we will have a minimum. The
minimum is £7=.017. But can we do better?
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Can we do better?
* Yes, choose more terms, £, ()=a,+a,t+a,t*+a;t’+a t*

* Or better yet, choose different approximating functions
that are orthogonal in the interval, 1.e., choose

J()=A,g,(t) +A4,;g,(t) TA,8,(f) ++4,8,(7)
such that

|2, (t)g,(t)dt =0 for k = j

[g.(0g,(0)dt =G, fork=j
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Orthogonal Functions

Using f(£)=A, g,(1) +4, g,(t) +4,2,(f) +~+A_g (1) over
the interval T and choose the 4, ’s to minimize E> we

have: P :%:[f(t)—fa(t)]zdt

T

:%[if(tfdt—z_‘;fa(t)f(t)dﬁ_ifa(t)zdt]

OE° 1 0
=———[=2| £.(O) f(t)dt )’ dt]=0
TR ifa()f() +£fa() ]
OF" : :
Where A represents a set k+1 simultaneous equations

k

Note:J £(¢)* dt is sometimes called the quadratic content or energy associated with £ (¢) in
interval T
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Coefficients of Orthogonal Functions

It can be shown that the first integral of each set of the k+1

equations 1s:
= a 7 KA j £,(0)f (0)d)

1 o

AR j (4,8,(0)+ Ag (1) ++4,g, (1)) f(t)dt]

- ‘72[ j ¢ (O f(t)dr]

And applying the orthogonal property to the second
integral, we have :

%a%jfa(z)z dt = %B%J-(Aogo(t)+A1gl(t)+---+Angn(t))2 dt

:%ZJ(Aogo(f)-l-A181(l‘)+..-+Angn(t))gk(t)dl‘:Ak%zlgk(t)zdt:Ak%Gk
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Coefficients of Orthogonal Functions

1 0 .
) (-2 j £ f(0)dt + j £.(1) dt)

-2 1 .
=— j g (S ()dr)+ 4,2 j g, (1) dt

:%[lgk(t)f(t)dt]JrA 26 -0

ko Tk
l g, (1) f(t)dt I g, (2) f(t)dt
And, at last we have: Ak - j [ g (t)]zdt = Gk

T
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What Functions are Orthogonal

* There 1s a class of polynomials which form
an orthogonal set

 But a better choice are the sinusoidal

functions: 2 7kt 2 7kt

f.(H=C +ZA cos( )+Bksin( - )]

=C +ZC cos(27[kt

+y,)
where Ck = Ak +Bk

_ -1 _Bk
y, = tan” (%)

k
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Some Properties of Sinusoids Which Make
Things Neater

Recall that e/'=cos t + j sin t
cos t = Va(e+ e )
sin t = 1/(2))(e’- e 7%

And for the complex number s = & + jw, there is its conjugate

§* = a — jo. Furthermore, s + s* = 2Re[s]= 2«

Therefore, let's rewrite £, (¢) in terms of complex series of ¢’

functions and their conjugates.

We now call this the Fourier Series of a function within an
interval of 7.
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Fourier Series

2kt
T

fa(t):C0+iCkcos( +y,)

2 2
7k +y, )+ C , cos( 7;Nt

kt 2kt
C Ay C -y C, ™y C, -y,
=Cy+—e T T4le T U gqqpkem Ty kT Ty

2 2 2

C, iy, C, -y,
—tyy —J(——ty¥y .
Feeet TN e T + TN e T Using Euler's formula.

27l :
=C,+C, cos(%t+l//l)+-~+ C , cos( +, ) Expanding the sum

27le 2zl C 27kt o 27kt
0
2 2

C ' j27Z'Nt C ' _j27rNt
+...+7N6N’Ne T+ e ¥e T Formulation of phasors

j2rki —j2rkt

| C
Letg,(t)=e 7 andtheng, (t)*=e 7 anda, :%e"”" and then ak*:T"e”"”‘ where a, = C,
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Fourier Series

f; (t) =4, + algl(t) + [algl(t)] Tt akgk(t) + [akgk(t)] Tt aNgN(t) + [aNgN(t)] *
Recasting in terms of general orthogonal functions.
N

=a, + Z a g, (t)+[a, g, (©)]* Simplifying the sum.

k=1
J2mkt —j2mkt

C, C .
where g, (t)=e¢ 7 , g ()*=e T ,a, :Tke"”k,ak*:j‘e_”’k,ao =C,
H+T
L f(g, () *dt 1 cnsr —j2rkt
and a, = T == f(e T dt
g Og@®*d T

N j2rkt —j27rkt J2rkt N j2rkt
fi)=a,+) [ae T +a*e T Zake T =G+ 2Re[ae T ]

k=1 k=1

Note that since the magnitude of the a,coefficients are 1/2 the value of the C,

coefficients, 2 real part is required.

1) = a0+2c cos(] 27kt

+y,), where 2a, =C.e’* anda, =C,
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Homework

e Fourier Series
—  Problem (3)

Compute the Fourier Series for the function using 3 terms in the series:

f()=1forO<t<rmandf(t)=0for z<t<27m

11 =1

1 2z ' 1 V4 ' ' '
a, =— Ne Mdt =— | le™dt = (—)(—)e ™| =——— (e -1
=5 J S (@) > j G TR = )
_ 1 okl (e jkaf2 _ g+ jk;r/Z) 1:
—27kj N
. krm |
sin —— 051
:—ze_jk”/z; fork =0 0 ‘ ‘
7k 3 .
1 2 1 V4 1 1.5 4
ay=— | f()dt=— |1dt ==
Y lf ®) 2;:! 2 "
.k -
1S, T 2
t)=—+2 cos(kt —k— 05
f(@) 5 Z — ( 2)
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Homework

Mean Squared Error

Problem (1)
. For our example in class, prove that £2=0.017 for f{({) = cos (7t/2)
Problem (2)

. It is desired to approximate f{(¢) = sin (¢) in the interval 0<¢<x/2 by the
straight line f (f)=mt+b. Determine the values of m and b for a least mean
square error approximation and calculate the corresponding MSE.

Fourier Series
Problem (3)

. Compute the Fourier Series for the function
using 3 terms in the series:
, flty=1for 0 <t <, f()=0 for 7<t<2rx
Problem (4)
. Compute the Fourier Series for the function

using 4 terms in the series:
A1) =t for 0<t<3

5CT.1.1, 5CT.1.2
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