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Signal Analysis

Lecture #7
5CT.1-2,4
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How to Analyze Different Classes of Signals
• Classes of Signals

– Periodic vs. Non Periodic
– Continuous vs. Discrete
– Bounded vs. Non Bounded
– Symmetries

• Use Mathematical Transformations
– such as Fourier Series and Fourier, Laplace, & Z transforms
– to analyze Signal Properties

• Frequencies which make up signal: Spectrum
• Energy Content

– to analyze and design systems which process these signals
• Filters
• etc
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Fourier Series

• A method for approximating a signal
• A means to analyze a signal
• Applies to either continuous or discrete 

signals
• Need to understand/review some 

background, foundations, and assumptions
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Related Sources Theorem
• If we know the response to 

a source, then the response 
to the derivative/integral of 
the source is the 
derivative/integration of 
the response to the source.

• An intuitive proof:
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Taylor Series Approximation of a Signal

• From calculus, if we have a single-valued function that is continuous 
and has continuous derivatives, it can be approximated as 

• Assuming that f (t) is the source function, using the related sources 
theorem, we know the response to a constant source, then we can get 
the response to any function tn by successful integration and then use 
superposition to get the full response due to fa(t)

• Rn(t) can be considered to be the error between f(t) and fa(t) and gets 
smaller as more terms are added
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An Example
2
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• How do we choose the coefficients, the ai’s, to get 
best approximation of f(t) within the interval –1 < t < 
+1?

• Let’s choose them that at t = -1,0,+1, 
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The Error Between f(t) & fa(t)

• Object: Choose the ai’s to minimize the error   (t)
= f (t) – fa(t) over the interval of the 
approximation, but
– Average error is not a good criterion since we can have 

large deviations which cancel each other out.  Example: 
(t) = sin t over the period 0 to  .  

• Instead try to minimize the average value of

which is known as the mean squared error. 
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An Example
2
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Since the second partials are positive we will have a minimum.  The 
minimum is E2 =.017.  But can we do better?
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Can we do better?

• Yes, choose more terms, fa(t)=a0+a1t+a2t2+a3t3+a4t4

• Or better yet, choose different approximating functions 
that are orthogonal in the interval, i.e., choose

fa(t)=A0 g0(t) +A1 g1(t) +A2 g2(t) +…+An gn(t)
such that

gk (t)g j (t)dt  0 for k  j
t1

t2



gk (t)g j (t)dt Gk  for k  j
t1

t2


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Orthogonal Functions

E 2 
1
T

[ f (t)  fa (t)]2 dt
T


      1
T

[ f (t)2 dt
T
  2 fa (t) f (t)dt

T
  fa (t)2 dt

T
 ]
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1
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[2 fa (t) f (t)dt
T
  fa (t)2 dt

T
 ]  0

Using  fa(t)=A0 g0(t) +A1 g1(t) +A2 g2(t) +…+An gn(t) over 
the interval T and choose the An’s to minimize E2, we 
have:

Where          represents a set k+1 simultaneous equations
kA

E

 2

Note: is sometimes called the quadratic content or energy associated with f (t) in 
interval T

f (t)2 dt
T
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Coefficients of Orthogonal Functions
It can be shown that the first integral of each set of the k+1
equations is:

And applying the orthogonal property to the second 
integral, we have :



BME 333 Biomedical Signals and Systems 
- J.Schesser

57

Coefficients of Orthogonal Functions
1
T


Ak

[2 fa (t) f (t)dt
T
  fa (t)2 dt

T
 ]


2
T

[ gk (t) f (t)dt
T
 ] Ak

1
T

2 gk (t)2 dt
T



2
T

[ gk (t) f (t)dt
T
 ] Ak

2
T

Gk  0

And, at last we have:
k

T
k

T
k

T
k

k G
dttftg

dttg

dttftg
A









)()(

)]([

)()(
2



BME 333 Biomedical Signals and Systems 
- J.Schesser

58

What Functions are Orthogonal

• There is a class of polynomials which form 
an orthogonal set

• But a better choice are the sinusoidal 
functions:

fa (t) C0  [Ak
k1

N

 cos(2kt
T

)  B k sin(2kt
T

)]

C0  C k
k1

N
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T

 k )
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2  Bk
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            k  tan1(
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Some Properties of Sinusoids Which Make 
Things Neater

Recall that e jt=cos t + j sin t

cos t = ½(e jt+ e -jt)

sin t = 1/(2j)(e jt- e -jt)

We now call this the Fourier Series of a function within an 
interval of T.

And for the complex number ,  there is its conjugate
. Furthermore, Re[ ]= 2

Therefore, let's rewrite ( ) in terms of complex series of 
functions and their conjugates.
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Fourier Series
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Fourier Series
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Homework
• Fourier Series

– Problem (3)
• Compute the Fourier Series for the function using 3 terms in the series:
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Homework
• Mean Squared Error

– Problem (1)
• For our example in class, prove that E2=0.017 for f(t) = cos (t/2) 

– Problem (2) 
• It is desired to approximate f(t) = sin (t) in the interval 0<t</2 by the 

straight line fa(t)=mt+b.  Determine the values of m and b for a least mean 
square error approximation and calculate the corresponding MSE.

• Fourier Series
– Problem (3)

• Compute the Fourier Series for the function 
using 3 terms in the series:

, f(t) = 1 for 0 < t < f (t)=0 for <t<2
– Problem (4)

• Compute the Fourier Series for the function 
using 4 terms in the series:  

f(t) = t for 0<t<

• 5CT.1.1, 5CT.1.2


