Fourier Series for Periodic Functions

Lecture \#8
5CT3,4,6,7

Fourier Series for Periodic Functions

- Up to now we have solved the problem of approximating a function $f(t)$ by $f_{a}(t)$ within an interval T.
- However, if $f(t)$ is periodic with period T, i.e., $f(t)=f(t+T)$, then the approximation is true for all t.
- And if we represent a periodic function in terms of an infinite Fourier series, such that the frequencies are all integral multiples of the frequency $1 / T$, where $k=1$ corresponds to the fundamental frequency of the function and the remainder are its harmonics.

$$
\begin{aligned}
& a_{k}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{\frac{-j 2 \pi k t}{T}} d t \\
& f(t)=a_{0}+\sum_{k=1}^{\infty}\left[\mathbf{a}_{k} e^{\frac{j 2 \pi k t}{T}}+\mathbf{a}_{k} * e^{\frac{-j 2 \pi k t}{T}}\right]=\sum_{k=-\infty}^{\infty} \mathbf{a}_{k} e^{\frac{j 2 \pi k t}{T}}=a_{0}+\sum_{k=1}^{\infty} 2 \operatorname{Re}\left[\mathbf{a}_{k} e^{\frac{j 2 \pi k t}{T}}\right] \\
& f(t)=a_{0}+\sum_{k=1}^{\infty} C_{k} \cos \left(\frac{2 \pi k t}{T}+\psi_{k}\right), \text { where } 2 \mathbf{a}_{k}=C_{k} e^{i \psi_{k}} \text { and } \mathbf{a}_{0}=C_{0}
\end{aligned}
$$

Another Form for the Fourier Series

$$
\begin{aligned}
& f(t)=C_{0}+\sum_{\mathrm{k}=1}^{\infty} C_{k} \cos \left(\frac{2 \pi k t}{T}+\psi_{k}\right) \\
& =A_{0}+\sum_{\mathrm{k}=1}^{\infty} A_{k} \cos \left(\frac{2 \pi k t}{T}\right)+B_{k} \sin \left(\frac{2 \pi k t}{T}\right)
\end{aligned}
$$

where $A_{k}=C_{k} \cos \psi_{k}$ and $B_{k}=-C_{k} \sin \psi_{k}$ and $A_{0}=C_{0}$

Fourier Series Theorem

- Any periodic function $f(t)$ with period T which is integrable $\left(\int f(t) d t<\infty\right)$ can be represented by an infinite Fourier Series
- If $[f(t)]^{2}$ is also integrable, then the series converges to the value of $f(t)$ at every point where $f(t)$ is continuous and to the average value at any discontinuity.

Properties of Fourier Series

- Symmetries
- If $f(t)$ is even, $f(t)=f(-t)$, then the Fourier Series contains only cosine terms
- If $f(t)$ is odd, $f(t)=-f(-t)$, then the Fourier Series contains only sine terms
- If $f(t)$ has half-wave symmetry, $f(t)=-f(t+T / 2)$, then the Fourier Series will only have odd harmonics
- If $f(t)$ has half-wave symmetry and is even, even quarter-wave, then the Fourier Series will only have odd harmonics and cosine terms
- If $f(t)$ has half-wave symmetry and is odd, odd quarterwave,then the Fourier Series will only have odd harmonics and sine terms

Properties of FS Continued

- Superposition holds, if $f(t)$ and $g(t)$ have coefficients $\boldsymbol{f}_{\boldsymbol{k}}$ and $\boldsymbol{g}_{\boldsymbol{k}}$, respectively, then $A f(t)+B g(t)=>A \boldsymbol{f}_{\boldsymbol{k}}+B \boldsymbol{g}_{\boldsymbol{k}}$
- Time Shifting: $f(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j 2 \pi k}{ }^{j}$

$$
\begin{aligned}
& f\left(t-t_{1}\right)=\sum_{k=-\infty}^{\infty} a_{k} e^{\frac{j 2 \pi h t}{T}} e^{-\frac{-j 2 \pi t_{1}}{T}}=\sum_{k=-\infty}^{\infty} a_{k} e^{-j 2 \pi t_{t}} e^{\frac{j 2 \pi t h}{T}} \\
& \left(a_{k}\right)_{\text {delayyed }}=\left(a_{k}\right)_{\text {originale }} e^{-j 2 \pi n h} T
\end{aligned}
$$

- Differentiation and Integration

$$
\begin{aligned}
& \left(a_{k}\right)_{\text {derivative }}=\frac{j 2 \pi k}{T}\left(a_{k}\right)_{\text {original }} \\
& \left(a_{k}\right)_{\text {integral }}=\frac{T}{j 2 \pi k}\left(a_{k}\right)_{\text {original }}
\end{aligned}
$$

FS Coefficients Calculation Example

$$
\begin{aligned}
& f(t)=0,-2<t<0 \\
& f(t)=E, 0<t<1 \\
& f(t)=0,1<t<2 \\
& f(t)=f(t \pm 4)
\end{aligned}
$$

$a_{k}=\frac{1}{4}\left[\int_{-2}^{0} 0 e^{\frac{-j 2 \pi k t}{4}} d t+\int_{0}^{1} E e^{\frac{-j 2 \pi k t}{4}} d t+\int_{1}^{2} 0 e^{\frac{-j 2 \pi k t}{4}} d t\right]$
Since $2 a_{k}=C_{k} \angle \psi$, then
$=\left.\frac{1}{4} \frac{E}{\frac{-j 2 \pi k}{4}} e^{\frac{-j 2 \pi k t}{4}}\right|_{0} ^{1}$
$=\frac{E}{-j 2 \pi k}\left[e^{\left[\frac{-j \pi k}{2}\right.}-1\right]=\frac{E e^{\frac{-j \pi k}{4}}}{\pi k}\left[\frac{e^{\frac{j \pi k}{4}}-e^{\frac{-j \pi k}{4}}}{j 2}\right]$
$=\frac{E}{4} \frac{\sin \left(\frac{\pi k}{4}\right)}{\frac{\pi k}{4}} e^{\frac{-j \pi k}{4}}, k \neq 0$
$\mathrm{a}_{0}=\frac{E}{4} \int_{0}^{1} d t=\frac{E}{4}$
BME 333 Biomedical Signals and Systems

Example Continued

Frequency Spectrum of the Pulse Function

- In the preceding example, the coefficients for each of the cosine terms was proportional to $\sin (k \pi / 4) /(k \pi / 4)$
- We call the function $S a(x)=\frac{\sin x}{x}$ the Sampling Function
- If we plot these coefficients along the frequency axis we have the frequency spectrum of $f(t)$

Frequency Spectrum

Note that the periodic signal in the time domain exhibits a discrete spectrum (i.e., in the frequency domain)

Another Example

This signal is odd, H / W symmetrical, and mean $=0$; this means no cosine terms, odd harmonics and mean $=0$.

$$
\begin{array}{ll}
a_{k}=\frac{1}{T}\left[\int_{\frac{-T}{2}}^{0}-V e^{\frac{-j 2 \pi k t}{T}} d t+\int_{0}^{\frac{T}{2}} V e^{\frac{-j 2 \pi k t}{T}} d t\right] \\
=\frac{V}{T}\left[\left.\frac{-1}{\frac{-j 2 \pi k}{T}} e^{\frac{-j 2 \pi k t}{T}}\right|_{\frac{-T}{2}} ^{T}+\left.\frac{1}{\frac{-j 2 \pi k}{T}} e^{\frac{-j 2 \pi k t}{T}}\right|_{0} ^{\frac{T}{2}}\right] & \left\lvert\, \begin{array}{l}
a_{k}=\frac{V}{j \pi k}[1-\cos \pi k]=\left\{\begin{array}{l}
\frac{2 V}{j \pi k} \text { for } \mathrm{k} \text { odd, }, \\
0 \text { for } \mathrm{k} \text { even. }
\end{array}\right. \\
=\frac{V}{T}\left[\frac{1}{\frac{-j 2 \pi k}{T}}\left\{\left[-e^{\frac{-j 2 \pi k 0}{T}}+e^{\frac{j 2 \pi k T}{T 2}}\right]+\left[e^{\frac{-j 2 \pi k T}{T 2}}-e^{\frac{-j 2 \pi k 0}{T}}\right]\right\}\right. \\
=\frac{V}{-j 2 \pi k} \angle-\frac{\pi}{2} \text { for } \mathrm{k} \text { odd. } \\
\therefore f(t)=2 \sum_{k=o d d}^{\infty} \frac{2 V}{\pi k} \cos \left(\frac{2 \pi k t}{T}-\frac{\pi}{2}\right) \\
f(t)=\sum_{k=\text { odd }}^{\infty} \frac{4 V}{\pi k} \sin \left(\frac{2 \pi k t}{T}\right)
\end{array}\right. \\
\text { BME 333 Biomedical Signals and.Systems }
\end{array}
$$

Fourier Series of an Impulse Train or Sampling Function

$$
\begin{aligned}
& x(t)=\sum_{n=-\infty}^{\infty} \delta(t-n T) \\
& a_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) e^{\frac{-j 2 k \pi t}{T}} d t \\
& =\frac{1}{T} \int_{-T / 2}^{T / 2} \delta(t) e^{\frac{-j 2 k \pi t}{T}} d t \\
& =\frac{1}{T} \text { for all } k \\
& x(t)=\frac{1}{T} \sum_{k=-\infty}^{\infty} e^{\frac{j 2 k \pi t}{T}}
\end{aligned}
$$

Fourier Series for Discrete Periodic Functions

$$
\begin{array}{ll}
x[n]=a_{0}+\sum_{k=1}^{\infty} a_{k} e^{\frac{j 2 \pi k n}{T}}+\sum_{k=1}^{\infty} a_{k}^{*} e^{\frac{-j 2 \pi k n}{T}}=\sum_{k=-\infty}^{\infty} a_{k} e^{\frac{j 2 \pi k n}{T}} \\
a_{k}=\frac{1}{T} \sum_{n=-T / 2}^{T / 2} x[n] e^{\frac{-j 2 \pi k n}{T}} & \begin{array}{l}
\text { Since } x[n] \text { is discrete, this } \\
\text { becomes a summation }
\end{array}
\end{array}
$$

Homework

- Problem (1)
- Compute the Fourier Series for the periodic functions
a) $f(t)=1$ for $0<t<\pi, f(t)=0$ for $\pi<t<2 \pi$
b) $f(t)=t$ for $0<t<3$
- Problem (2)
- Compute the Fourier series of the following Periodic Functions:
- $\quad f(t)=t, 2 n \pi<t<(2 n+1) \pi$ for $n \geq 0$

$$
=0,(2 n+1) \pi<t<(2 n+2) \pi \text { for } n \geq 0
$$

- $\quad f(t)=e^{-t / \pi}, 2 n \pi<t<(2 n+2) \pi$ for $n \geq 0$ Use Matlab to plot $f(t)$ using a_{k} for maximum number of components, $N=5,10,100$, and1000. Show your code.
- Problem (3)
- Problems: 4.1/3 Find the Fourier series of the following waveforms (choose $t_{c}=T_{o} / 4$):

BME 333 Biomedical Signals and Systems

Homework

- Problem (4)
- Deduce the Fourier series for the functions shown (hint: deduce the second one using superposition):

- 5CT.7.1

