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Fourier Series for Periodic Functions

Lecture #8
5CT3,4,6,7
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Fourier Series for Periodic Functions
• Up to now we have solved the problem of approximating a 

function f(t) by fa(t) within an interval T.  
• However, if f(t) is periodic with period T, i.e., f(t)=f(t+T), then the 

approximation is true for all t.
• And if we represent a periodic function in terms of an infinite 

Fourier series, such that the frequencies are all integral multiples 
of the frequency 1/T, where k=1 corresponds to the fundamental 
frequency of the function and the remainder are its harmonics.
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Another Form for the Fourier Series
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Fourier Series Theorem

• Any periodic function f (t) with period T
which is integrable (                     ) can be 
represented by an infinite Fourier Series

• If [f (t)]2 is also integrable, then the series 
converges to the value of f (t) at every point 
where f(t) is continuous and to the average 
value at any discontinuity.

f (t)dt  
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Properties of Fourier Series
• Symmetries

– If f (t) is even, f (t)=f (-t), then the Fourier Series 
contains only cosine terms

– If f (t) is odd, f (t)=-f (-t), then the Fourier Series 
contains only sine terms

– If f (t) has half-wave symmetry, f (t) = -f (t+T/2), then 
the Fourier Series will only have odd harmonics

– If f (t) has half-wave symmetry and is even, even 
quarter-wave, then the Fourier Series will only have 
odd harmonics and cosine terms

– If f (t) has half-wave symmetry and is odd,  odd quarter-
wave,then the Fourier Series will only have odd 
harmonics and sine terms
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Properties of FS Continued

• Superposition holds, if f(t) and g(t) have coefficients fk and
gk, respectively, then Af(t)+Bg(t) => Afk+Bgk

• Time Shifting: 

• Differentiation and Integration
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FS Coefficients Calculation Example
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Example Continued

1 term

10 terms
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Frequency Spectrum of the Pulse Function

• In the preceding example, the coefficients 
for each of the cosine terms was 
proportional to 

• We call the function
the Sampling Function

• If we plot these coefficients along the 
frequency axis we have                             
the frequency spectrum of                                  
f(t)
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Frequency Spectrum

Note that the periodic signal in 
the time domain exhibits a 
discrete spectrum (i.e., in the 
frequency domain)
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Another Example

T

V This signal is odd, H/W symmetrical, and 
mean=0; this means no cosine terms, odd 
harmonics and mean=0.
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Fourier Series of an Impulse Train or 
Sampling Function
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Fourier Series for Discrete Periodic 
Functions
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Since x[n] is discrete, this 
becomes a summation
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Homework
• Problem (1)

– Compute the Fourier Series for the periodic functions 
a) f(t) = 1 for 0<t<π, f(t)=0 for π<t<2π
b) f(t) = t for 0<t<3

• Problem (2)
– Compute the Fourier series of the following Periodic Functions: 

• f(t)= t, 2nπ < t < (2n+1)π  for n ≥ 0
= 0, (2n+1)π < t < (2n+2)π for n ≥ 0

• f(t)= e-t/π, 2nπ < t < (2n+2)π  for n ≥ 0  Use Matlab to plot f(t) using ak for 
maximum number of components, N=5,10, 100, and1000.  Show your code.

• Problem (3)
– Problems: 4.1/3 Find the Fourier series of the following waveforms 

(choose tc=To/4): 
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Homework
• Problem (4)

– Deduce the Fourier series for the functions shown (hint: deduce the second one 
using superposition):

• 5CT.7.1 
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