Fourier Series for Periodic Functions

Lecture #8 5CT3,4,6,7

BME 333 Biomedical Signals and Systems - J.Schesser

Fourier Series for Periodic Functions

- Up to now we have solved the problem of approximating a function f(t) by $f_a(t)$ within an interval T.
- However, if f(t) is periodic with period T, i.e., f(t)=f(t+T), then the approximation is true for all *t*.
- And if we represent a periodic function in terms of an infinite Fourier series, such that the frequencies are all integral multiples of the frequency 1/T, where k=1 corresponds to the fundamental frequency of the function and the remainder are its harmonics.

$$a_{k} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{\frac{-j2\pi kt}{T}} dt$$

$$f(t) = a_{0} + \sum_{k=1}^{\infty} [\mathbf{a}_{k} e^{\frac{j2\pi kt}{T}} + \mathbf{a}_{k} * e^{\frac{-j2\pi kt}{T}}] = \sum_{k=-\infty}^{\infty} \mathbf{a}_{k} e^{\frac{j2\pi kt}{T}} = a_{0} + \sum_{k=1}^{\infty} 2 \operatorname{Re}[\mathbf{a}_{k} e^{\frac{j2\pi kt}{T}}]$$

$$f(t) = a_{0} + \sum_{k=1}^{\infty} C_{k} \cos(\frac{2\pi kt}{T} + \psi_{k}), \text{ where } 2\mathbf{a}_{k} = C_{k} e^{j\psi_{k}} \text{ and } \mathbf{a}_{0} = C_{0}$$

BME 333 Biomedical Signals and Systems - J.Schesser

Another Form for the Fourier Series

$$f(t) = C_0 + \sum_{k=1}^{\infty} C_k \cos(\frac{2\pi kt}{T} + \psi_k)$$
$$= A_0 + \sum_{k=1}^{\infty} A_k \cos(\frac{2\pi kt}{T}) + B_k \sin(\frac{2\pi kt}{T})$$
where $A_k = C_k \cos \psi_k$ and $B_k = -C_k \sin \psi_k$ and $A_0 = C_0$

Fourier Series Theorem

- Any periodic function f(t) with period Twhich is integrable $(\int f(t) dt < \infty)$ can be represented by an infinite Fourier Series
- If $[f(t)]^2$ is also integrable, then the series converges to the value of f(t) at every point where f(t) is continuous and to the average value at any discontinuity.

Properties of Fourier Series

- Symmetries
 - If f(t) is even, f(t)=f(-t), then the Fourier Series contains only cosine terms
 - If f(t) is odd, f(t)=-f(-t), then the Fourier Series contains only sine terms
 - If f(t) has half-wave symmetry, f(t) = -f(t+T/2), then the Fourier Series will only have odd harmonics
 - If f(t) has half-wave symmetry and is even, even quarter-wave, then the Fourier Series will only have odd harmonics and cosine terms
 - If f(t) has half-wave symmetry and is odd, odd quarterwave, then the Fourier Series will only have odd harmonics and sine terms

Properties of FS Continued

- Superposition holds, if f(t) and g(t) have coefficients f_k and g_k, respectively, then Af(t)+Bg(t) => Af_k+Bg_k
- Time Shifting: $f(t) = \sum_{k=-\infty}^{\infty} a_k e^{\frac{j2\pi kt}{T}}$ $f(t-t_1) = \sum_{k=-\infty}^{\infty} a_k e^{\frac{j2\pi kt}{T}} e^{\frac{-j2\pi kt_1}{T}} = \sum_{k=-\infty}^{\infty} a_k e^{\frac{-j2\pi kt_1}{T}} e^{\frac{j2\pi kt}{T}}$ $(a_k)_{\text{delayed}} = (a_k)_{\text{original}} e^{\frac{-j2\pi kt_1}{T}}$
- Differentiation and Integration

$$(a_k)_{\text{derivative}} = \frac{j2\pi k}{T} (a_k)_{\text{original}}$$
$$(a_k)_{\text{integral}} = \frac{T}{j2\pi k} (a_k)_{\text{original}}$$

BME 333 Biomedical Signals and Systems - J.Schesser

FS Coefficients Calculation Example

Example Continued

BME 333 Biomedical Signals and Systems - J.Schesser

Frequency Spectrum of the Pulse Function

- In the preceding example, the coefficients for each of the cosine terms was proportional to $\frac{\sin(k\pi/4)}{k\pi/4}$
- We call the function $Sa(x) = \frac{\sin x}{x}$ the Sampling Function
- If we plot these coefficients along the $\begin{bmatrix} 1 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.4 \end{bmatrix}$

1.2

20

τv

30

Frequency Spectrum

Frequency (kπ/4)

BME 333 Biomedical Signals and Systems - J.Schesser

Another Example

This signal is odd, H/W symmetrical, and mean=0; this means no cosine terms, odd harmonics and mean=0.

Fourier Series of an Impulse Train or Sampling Function

BME 333 Biomedical Signals and Systems - J.Schesser

13

Fourier Series for Discrete Periodic Functions

$$x[n] = a_0 + \sum_{k=1}^{\infty} a_k e^{\frac{j2\pi kn}{T}} + \sum_{k=1}^{\infty} a_k^* e^{\frac{-j2\pi kn}{T}} = \sum_{k=-\infty}^{\infty} a_k e^{\frac{j2\pi kn}{T}}$$
$$a_k = \frac{1}{T} \sum_{n=-\frac{T}{2}}^{\frac{T}{2}} x[n] e^{\frac{-j2\pi kn}{T}}$$
Since $x[n]$ is discrete, the becomes a summation

this

Homework

- Problem (1)
 - Compute the Fourier Series for the periodic functions

a)
$$f(t) = 1$$
 for $0 \le t \le \pi$, $f(t) = 0$ for $\pi \le t \le 2\pi$
b) $f(t) = t$ for $0 \le t \le 3$

- Problem (2)
 - Compute the Fourier series of the following Periodic Functions:
 - $f(t) = t, 2n\pi < t < (2n+1)\pi \text{ for } n \ge 0$ = 0, $(2n+1)\pi < t < (2n+2)\pi \text{ for } n \ge 0$
 - $f(t) = e^{-t/\pi}$, $2n\pi < t < (2n+2)\pi$ for $n \ge 0$ Use Matlab to plot f(t) using a_k for maximum number of components, N=5,10, 100, and 1000. Show your code.
- Problem (3)

Problems: 4.1/3 Find the Fourier series of the following waveforms (choose $t_c = T_o/4$):

15

BME 333 Biomedical Signals and Systems - J.Schesser

Homework

- Problem (4)
 - Deduce the Fourier series for the functions shown (hint: deduce the second one using superposition):

• 5CT.7.1