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Fourier Series for Periodic Functions

« Up to now we have solved the problem of approximating a
function f(¢) by f (¢) within an interval T.

 However, if f(?) 1s periodic with period T, 1.e., f(t)=f(¢+T1), then the
approximation 1s true for all ¢.

« And if we represent a periodic function in terms of an infinite
Fourier series, such that the frequencies are all integral multiples

of the frequency 1/7, where k=1 corresponds to the fundamental
frequency of the function and the remainder are its harmonics.
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Another Form for the Fourier Series

f(@®)=C, +ZC cos(zﬂktﬂyk)

27zkt)+ B, sin (27zkt

=4, + z A, cos( )
where 4, = C, cosy, and B, = -C, siny, and 4, = C,
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Fourier Series Theorem

* Any periodic function f (¢) with period T
which is integrable (}[ f(t)dt <o) can be
represented by an infinite Fourier Series

« If [f(¥)]° is also integrable, then the series
converges to the value of 1 (¢) at every point
where f(7) 1s continuous and to the average
value at any discontinuity.

BME 333 Biomedical Signals and Systems
- J.Schesser



Properties of Fourier Series

e Symmetries

If £ (¢) 1s even, f (¢)=f (-¢), then the Fourier Series
contains only cosine terms

If £(¢) 1s odd, f (#)=-f (-1), then the Fourier Series
contains only sine terms

If /' (¢) has half-wave symmetry, f (¢) = -f (t+7/2), then

|~

<

the Fourier Series will only have odd harmonics

If /' (¢) has half-wave symmetry and 1s even, even
quarter-wave, then the Fourier Series will only have
odd harmonics and cosine terms

If /' (¢) has half-wave symmetry and 1s odd, odd quarter-
wave,then the Fourier Series will only have odd
harmonics and sine terms
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Properties of FS Continued

* Superposition holds, if f(¢) and g(¢) have coefficients f, and
g, respectively, then Af(¢#)+Bg(t) => Af,+Bg,
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FS Coefficients Calculation Example
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Example Continued

I term
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Frequency Spectrum of the Pulse Function

* In the preceding example, the coefficients
for each of the cosine terms was
proportional to sin(kz/4)/(kx/4)

 We call the function Sa(x) = %

the Sampling Function
« If we plot these coefficients along the ..

frequency axis we have

the frequency spectrum of

1) CT e

BME 333 Biomedical Signals and Systems
- J.Schesser

A4
—




Frequency Spectrum

Note that the periodic signal in
the time domain exhibits a 15

discrete spectrum (1.e., in the
frequency domain)
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Another Example

Vv This signal is odd, H/'W symmetrical, and
mean=0; this means no cosine terms, odd
T harmonics and mean=0.
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0 for k even.
. —j2rkt 0 —j2xkt T
_r -t - L7 R = 2 T forkodd.
T —j2nk ~ —Jj2nk 0 k2
= 2V 2rkt r«
r T L f(0)=2) Z—cos(-—->)
. . . k T 2
14 1 —j27k0 j27kT —j27kT —j27k0 k=odd 70
= — e T +e 2 J+[e T2 —-e T S 4V . 2rkt
7k I+ B 0= 3 2 sin2H
T k=odd

- j27k0 j2nkT - j27kT - j27k0

{[ e T +e T2 ]‘|‘[€ T2 —e T ]} '1’

_J27zk OZT ﬂ PWH
TR

BME 333 Biomedical Signals and Systems 2
- J.Schesser

[=)




Fourier Series of an Impulse Train or

Sampling Function

x(¢) = Z S(t—nT)
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Fourier Series for Discrete Periodic

Functions
0 J2mkn o0 — j27tkn 0 Jj2mkn
x[n]=a0+2ake ! +Zake I = Zake d
k=1 k=1 k=—o0
1 % —J27kn
_ T
dp = T Z X|nje Since x[n] is discrete, this
n="1/, becomes a summation
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Homework
Problem (1)
—  Compute the Fourier Series for the periodic functions
a) f(t) = 1 for 0<t<m, f(t)=0 for 7<t<2m
b) f(t) =t for 0<t<3
Problem (2)

—  Compute the Fourier series of the following Periodic Functions:
e f)=t,2nx<t<(2n+Dr forn>0
=0, 2n+Dr <t < (2n+2)mr forn> 0
«  fly=e"" 2nx <t < (2n+2)m forn> 0 Use Matlab to plot f{¢) using a, for
maximum number of components, N=5,10, 100, and1000. Show your code.

Problem (3)

—  Problems: 4.1/3 Find the Fourier series of the following waveforms
(choose =T /4): A
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B '(To+ tz) - (To' t()
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Problem (4)

Homework

— Deduce the Fourier series for the functions shown (hint: deduce the second one
using superposition):
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