Spectrum of Biomedical Signals

Lecture 8a

BME 333 Biomedical Signals and Systems - J.Schesser

How can we use Fourier Series to calculate a biomedical signal.

- Fourier Series requires that the signal is periodic
- What biomedical signal is periodic?
- Can we take a non-periodic signal and make it periodic?

Assumptions

- Let's take a ECG as an example
- If we know what the range of frequencies of our non-periodic signal
 - 50 beats per minutes
 - 200 beats per minutes maximum for a 20 year old
- Estimate the spectrum using these facts.

Steps to Estimating ECG Spectrum

- 1. Model the ECG as a periodic signal with fundamental frequency f_o
- 2. Calculate the Fourier coefficients, a_k , of the ECG.
- 3. Plot the spectrum of the ECG signal, (i.e., a_k) as a function of k and, therefore, frequency, $f = kf_o$
- 4. Note how the spectrum changes as f_o varies between its maximum and its minimum

How do we do step 1

- Step 1: Model the ECG as a periodic signal with fundamental frequency f_o
- Model the ECG as a set of simple signals that we already know
 - Square Wave Model
 - Triangular Wave Model
 - Quadratic Model
 - Mixture Model

BME 333 Biomedical Signals and Systems - J.Schesser

ECG Modeling Examples

- Which is a better model?
- Which is easier to calculate?

How do we do step 2

- Calculate the Fourier coefficients, a_k , of the ECG.
- Calculate a_k for the general model
- Duplicate this calculation for each component of the ECG
- Use superposition for all of the model components

Fourier Series of a ECG Using a Square Wave Model

$$a_{k} = \frac{1}{T_{o}} \int_{0}^{T_{o}} s(t) e^{-j(\frac{2\pi}{T_{o}})kt} dt$$

By superposition, we have for each wave

 $a_{k} = a_{k}^{P} + a_{k}^{Q} + a_{k}^{R} + a_{k}^{S} + a_{k}^{T}$ $\Re e[a_{k}] = \Re e[a_{k}^{P}] + \Re e[a_{k}^{Q}] + \Re e[a_{k}^{R}] + \Re e[a_{k}^{S}] + \Re e[a_{k}^{T}]$ $\Im m[a_{k}] = \Im m[a_{k}^{P}] + \Im m[a_{k}^{Q}] + \Im m[a_{k}^{R}] + \Im m[a_{k}^{S}] + \Im m[a_{k}^{T}]$ $a_{k} = \sqrt{\Re e[a_{k}]^{2} + \Im m[a_{k}]^{2}} e^{j \tan^{-1}(\frac{\Im m[a_{k}]}{\Re e[a_{k}]})}$ where for the *Mth* wave

BME 333 Biomedical Signals and Systems - J.Schesser

Fourier Series of a ECG Using a Triangular Wave Model

Fourier Series of a ECG Using a Triangular Wave Model

$$\begin{aligned} a_{k} &= \frac{1}{T_{o}} \int_{0}^{T_{o}} s(t) e^{-j(\frac{2\pi}{T_{o}})kt} dt = \frac{1}{T_{o}} \int_{t_{1}}^{t_{2}} A(\frac{t-t_{1}}{t_{2}-t_{1}}) e^{-j(\frac{2\pi}{T_{o}})kt} dt + \frac{1}{T_{o}} \int_{t_{2}}^{t_{3}} A(\frac{t_{3}-t}{t_{3}-t_{2}}) e^{-j(\frac{2\pi}{T_{o}})kt} dt \\ &= \frac{A}{T_{o}} [\int_{t_{1}}^{t_{2}} (\frac{t-t_{1}}{t_{2}-t_{1}}) e^{-j(\frac{2\pi}{T_{o}})kt} dt + \int_{t_{2}}^{t_{3}} (\frac{t_{3}-t}{t_{3}-t_{2}}) e^{-j(\frac{2\pi}{T_{o}})kt} dt] \\ &= \frac{A}{T_{o}} [\int_{t_{1}}^{t_{2}} (\frac{t-t_{1}}{t_{2}-t_{1}}) e^{-j(\frac{2\pi}{T_{o}})kt} dt - \int_{t_{2}}^{t_{3}} (\frac{t-t_{3}}{t_{3}-t_{2}}) e^{-j(\frac{2\pi}{T_{o}})kt} dt] \end{aligned}$$

After 4 pages of calculations, I get:

$$a_{k} = \frac{A}{2\pi k} \left[e^{-j\left[(\frac{2\pi}{T_{o}})k\frac{(t_{2}+t_{1})}{2} + \frac{\pi}{2}\right]} \operatorname{sinc}\left[(\frac{2\pi}{T_{o}})k(\frac{t_{2}-t_{1}}{2})\right] + e^{-j\left[(\frac{2\pi}{T_{o}})k(\frac{t_{3}+t_{2}}{2}) + \frac{\pi}{2}\right]} \operatorname{sinc}\left[(\frac{2\pi}{T_{o}})k(\frac{t_{3}-t_{2}}{2})\right] \right]$$

BME 333 Biomedical Signals and Systems - J.Schesser

Fourier Series of a ECG Using a Square Wave Model

Rate 80 1.333333

	Amplitude	Start	Width	End
Pwave	0.025	0	0.1	0.1
Qwave	-0.1	0.1	0.033333	0.133333
Rwave	2.5	0.133333	0.033333	0.166667
Swave	-0.1	0.166667	0.033333	0.2
Twave	0.05	0.2	0.1	0.35

Homework

- Calculate the "periodic" ECG model Fourier coefficients for a square wave model
- Use superposition to get the Fourier coefficients for the complete ECG.