BME 333 Biomedical Signals and Systems

Biomedical Signals and Systems Quiz \#2

- Choose 4 out of 5
- Problems 2, 3, \& 4 are mandatory

Biomedical Signals and Systems Quiz \#2

1. a) Sketch the convolution of $t^{2} u(t)$ with itself
b) Convolve $t u(t)$ with $u(t)$ and sketch the result. NOTE THE ORDER.
c) Sketch the convolution of $e^{-2 t} u(t)$ with itself.
2. Compute the Fourier Transform for the following functions without integrating
a) $f(t)=e^{-t} u(t) \quad$ NOTE: $\Im\left[e^{-\alpha t} f(t)\right]=F(\alpha+j \omega)$
b) $f(t)=\cos (t) u(t)$
c) $f(t)=e^{-t} \cos (t) u(t)$
3. Compute the Discrete Fourier Transform for the following function and sketch the FT for $\mathrm{N}=10$

NOTE $: \sum_{0}^{N-1} a^{n}=\frac{1-a^{N}}{1-a}$
a) $x[n]=10$ for $n=0$
$=0$ for $n=1,2, \ldots, N-1$
b) $x[n]=10$ for $n=0,1,2, \ldots, N-1$
c) Describe why the results for both a) and b) makes sense. What is the relationship of these two problems?

Biomedical Signals and Systems Quiz \#2

4. The following periodic signal is passed through an ideal bandpass filter with cutoff frequencies of 27.5 kHz and 57.5 kHz .
$x(t)= \begin{cases}1 & 0 \leq t<20 \mu \mathrm{sec} \\ 0 & 20 \mu \mathrm{sec} \leq t<40 \mu \mathrm{sec}\end{cases}$
a) Find and sketch the spectrum of both the input and output signals.
b) What happens if the bandpass filter's cutoff frequencies are changed to 65 kHz and 85 kHz ? Find and sketch the spectrum of both the input and output signals.
c) What happens if low pass filter's with cutoff frequency of 200 kHz is used? Find and sketch the spectrum of both the input and output signals.
d) What happens if the band elimination filter with cutoff frequencies 210 kHz and 230 kHz is used? Find and sketch the spectrum of both the input and output signals.

BME 333 Biomedical Signals and Systems - J.Schesser

Biomedical Signals and Systems Quiz \#2

5. Apply the signal to the input of the circuit and calculate and plot the spectrum of the output signal. What happens if the carrier frequency is changed to 1 kHz and the modulation signal to 10 Hz ?

$$
v_{i n}(t)=\left(1+m_{o} \cos t\right) \cos 100 t
$$

BME 333 Biomedical Signals and Systems - J.Schesser

Biomedical Signals and Systems Quiz \#2

1. a)) Sketch the convolution of $t^{2} u(t)$ with itself

$C=\int_{-\infty}^{\infty} \tau^{2} u(\tau)(t-\tau)^{2} u(t-\tau) d \tau=0$ since $u(\tau)=0$ for $\tau \& t<0$

Cast \#2
$C=\int_{-\infty}^{-\infty} \tau^{2} u(\tau)(t-\tau)^{2} u(t-\tau) d \tau$ for $t \geq 0$
$C=\int_{0}^{t} \tau^{2}(t-\tau)^{2} d \tau=\int_{0}^{t} \tau^{2}\left(t^{2}-2 t \tau+\tau^{2}\right) d \tau=\int_{0}^{t}\left(\tau^{2} t^{2}-2 t \tau^{3}+\tau^{4}\right) d \tau=$
$=\left.\left(\frac{\tau^{3} t^{2}}{3}-\frac{2 t \tau^{4}}{4}+\frac{\tau^{5}}{5}\right)\right|_{0} ^{t}=\frac{t^{5}}{3}-\frac{t^{5}}{2}+\frac{t^{5}}{5}=\frac{t^{5}}{30} ;$ for $t>0$
$C=\frac{t^{5}}{30} u(t) \quad \begin{gathered}\text { BME } 333 \text { Biomedical Signals } \\ \text { and Systems }- \text { J.Schesser }\end{gathered}$

Biomedical Signals and Systems Quiz \#2

b) Convolve $t u(t)$ with $u(t)$ and sketch the result. NOTE THE ORDER THIS IS THE WRONG ORDER

$u(\tau)=0$ for $\tau \& t<0$
Case \#2
$C=\int_{0}^{t} \tau u(\tau) u(t-\tau) d \tau$ for $t>0$
$C=\int_{0}^{t} \tau d \tau=\left.\frac{\tau^{2}}{2}\right|_{0} ^{t}=\frac{t^{2}}{2} ;$ for $t>0$
$C=\frac{t^{2}}{2} u(t)$

BME 333 Biomedical Signals

Biomedical Signals and Systems Quiz \#2

b) Convolve $t u(t)$ with $u(t)$ and sketch the result. NOTE THE ORDER THIS IS THE CORRECT ORDER

Case \#1

$t<0$
$C=\int_{-\infty}^{\infty}(t-\tau) u(\tau) u(t-\tau) d \tau=0$ for $t<0$ since

Case \#2
$t>0$
$u(\tau)=0$ for $\tau \& t<0$
Case \#2
$C=\int_{0}^{t}(t-\tau) u(\tau) u(t-\tau) d \tau$ for $t>0$
$C=\int_{0}^{t}(t-\tau) d \tau=-\left.\frac{(t-\tau)^{2}}{2}\right|_{0} ^{t}=\frac{t^{2}}{2} ;$ for $t>0$
$C=\frac{t^{2}}{2} u(t)$

BME 333 Biomedical Signals and Systems - J.Schesser

Biomedical Signals and Systems Quiz \#2

1. b) Sketch the convolution of $e^{-t} u(t)$ with itself.

Biomedical Signals and Systems Quiz 2

2. Compute the Fourier Transform for the following functions without integrating
a) $f(t)=e^{-t} u(t)$
b) $f(t)=\cos (t) u(t)$
c) $f(t)=e^{-t} \cos (t) u(t)$
a) $\Im[u(t)]=\frac{1}{j \omega}$;
using the frequency displacement property
$\Im\left[e^{-\alpha t} u(t)\right]=\frac{1}{\alpha+j \omega} ; \Im\left[e^{-t} u(t)\right]=\frac{1}{1+j \omega}$
b) $\mathfrak{J}[\cos (t) u(t)]=\mathfrak{J}\left[\frac{e^{j t}+e^{-j t}}{2} u(t)\right]=\frac{1}{2} \Im\left[e^{j t} u(t)\right]+\frac{1}{2} \mathfrak{J}\left[e^{-j t} u(t)\right]$
using the frequency displacement property

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{1}{-j+j \omega}+\frac{1}{j+j \omega}\right] \\
& =\frac{1}{2}\left[\frac{j+j \omega+-j+j \omega}{(-j+j \omega)(j+j \omega)}\right]=\frac{j \omega}{\left(1-\omega^{2}\right)}
\end{aligned}
$$

c) $\mathfrak{J}\left[e^{-t} \cos (t) u(t)\right]=\Im\left[e^{-t} \frac{e^{j t}+e^{-j t}}{2} u(t)\right]=\frac{1}{2} \Im\left[e^{(-1+j) t} u(t)\right]+\frac{1}{2} \mathfrak{J}\left[e^{(-1-j) t} u(t)\right]$
using the frequency displacement property

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{1}{1-j+j \omega}+\frac{1}{1+1 j+j \omega}\right] \\
& =\frac{1}{2}\left[\frac{1+j+j \omega+1-1 j+j \omega}{(1-j+j \omega)(1+j+j \omega)}\right] \\
& =\frac{1+j \omega}{\left(2-\omega^{2}+j 2 \omega\right)}
\end{aligned}
$$

Biomedical Signals and Systems Quiz 2

3. Compute the Discrete Fourier Transform for the following function and sketch the FT for $\mathrm{N}=10$

$$
\begin{aligned}
& \text { a) } x[n]=10 \text { for } n=0 \\
& =0 \text { for } n=1,2, \ldots, N-1 \\
& \text { b) } x[n]=10 \text { for } n=0,1,2, \ldots, N-1
\end{aligned}
$$

c) Describe why the results for both a) and b) makes sense. What is the relationship of these two problems?

$$
\begin{aligned}
& \mathbf{X}(k)=\sum_{n=0}^{N-1} x(n) e^{-j k 2 \pi n / N} \\
& x(n)=\sum_{n=0}^{N-1} \mathbf{X}(k) e^{j k 2 \pi n / N} \\
& \text { a) } x(n)=10 \text { for } n=0 \\
& =0 \text { for } n=1,2, \ldots N \\
& \mathbf{X}(k)=\sum_{n=0}^{N-1} x(n) e^{-j k 2 \pi n / N} \\
& =x(0) e^{-j k 2 \pi 0 / N}+x(1) e^{-j k 2 \pi 1 / N}+\cdots+x(N) e^{-j k 2 \pi N / N} \\
& =10 \\
& \text { BME } 333 \text { Biomedical Signals }
\end{aligned}
$$

Biomedical Signals and Systems Quiz 2

3. Compute the Discrete Fourier Transform for the following function and sketch the FT for $\mathrm{N}=10$

$$
\text { b) } x[n]=10 \text { for } n=0,1,2, \ldots, N-1
$$

c) Describe why the results for both a) and b) makes sense. What is the relationship of these two problems?
b) $x[n]=10$

NOTE: $\sum_{0}^{N-1} a^{n}=\frac{1-a^{N}}{1-a}$
$\mathbf{X}(k)=\sum_{n=0}^{N-1} x(n) e^{-j k 2 \pi n / N}$
$=\sum_{n=0}^{N-1} 10 e^{-j k 2 \pi n / N}=10 \sum_{n=0}^{N-1}\left(e^{-j k 2 \pi / N}\right)^{n}$
$=10 \frac{1-e^{-j(k 2 \pi / N) N}}{1-e^{-j(k 2 \pi / N)}}$
$=10 \frac{1-e^{-j k 2 \pi}}{1-e^{-j(k 2 \pi / N)}}=0 ; k \neq 0$
For $k=0$, use L'Hopital's Rule
$\lim _{k \rightarrow 0} 10 \frac{\frac{d}{d k} 1-e^{-j k 2 \pi}}{\frac{d}{d k} 1-e^{-j(k 2 \pi / N)}}=\lim _{k \rightarrow 0} 10 \frac{-j 2 \pi e^{-j k 2 \pi}}{-j \frac{2 \pi}{N} e^{-j(k 2 \pi / N)}}=10 \frac{-j 2 \pi}{-j \frac{2 \pi}{N}}=10 N=100$
$\mathbf{X}(k)=10 N=100 ; k=0$
$\mathbf{X}(k)=0 ; k \neq 0$

Biomedical Signals and Systems Quiz 2

3. Compute the Discrete Fourier Transform for the following function and sketch the FT for $\mathrm{N}=10$
c) Describe why the results for both a) and b) makes sense. What is the relationship of these two problems?
c) They are duals of each other.

Problem a) is an impulse in the time domain which yields a constant in the frequency domain (needs all frequencies).

Problem b) is a constant in the time domain which yields an impulse in the frequency domain (single frequency at DC).

Biomedical Signals and Systems Quiz 2

4. The following periodic signal is passed through an idea bandpass filter with cutoff frequencies of

$$
\begin{aligned}
& x(t)=\left\{\begin{array}{cc}
1 & 0 \leq t<20 \mu \mathrm{sec} \\
0 & 20 \mu \mathrm{sec} \leq t<40 \mu \mathrm{sec}
\end{array}\right. \\
& x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \\
& a_{k}=\frac{1}{T_{o}} \int_{-T_{o} / 2}^{0} x(t) e^{-j k \omega_{o} t} d t=\frac{1}{T_{o}} \int_{0}^{T_{o} / 2} 1 e^{-j k \omega_{o} t} d t \\
& =\left.\frac{1}{T_{o}\left(-j k \omega_{o}\right)} e^{-j k \omega_{o} t}\right|_{0} ^{T_{0} / 2}=\frac{1}{-j 2 k \pi}\left[e^{-j k \frac{2 \pi T_{0}}{T_{o}}}-e^{-j k \frac{2 \pi}{T_{o}}}\right] \\
& =\frac{1}{j 2 k \pi}\left[1-e^{-j k \pi}\right] \\
& a_{k}=\frac{1}{j 2 k \pi}\left[1-e^{-j k \pi}\right] \\
& =\frac{1}{j 2 k \pi}\left[1-(-1)^{k}\right] \\
& =\frac{1}{j k \pi} \text { for odd values of } k \\
& =0 \quad \text { for even values of } k \\
& \text { Recall that } e^{-j k \pi}=\cos k \pi-j \sin k \pi=1 \text { for even values of } k \\
& \text { or } e^{-j k \pi}=(-1)^{k} \\
& =-1 \text { for odd values of } k a_{0}=\frac{1}{T_{o}} \int_{-T_{o} / 2}^{T_{o} / 2} x(t) d t=\frac{1}{T_{o}} \int_{0}^{T_{o} / 2} 1 d t=\frac{1}{2}
\end{aligned}
$$

Biomedical Signals and Systems

Quiz 2

4. The following periodic signal is passed through an idea bandpass filter with cutoff frequencies of

$$
x(t)=\left\{\begin{array}{cc}
1 & 0 \leq t<20 \mu \mathrm{sec} \\
0 & 20 \mu \mathrm{sec} \leq t<40 \mu \mathrm{sec}
\end{array}\right.
$$

a) Since $T_{o}=40 \mu \mathrm{sec}$ then $f_{o}=25 \mathrm{kHz}$, then output signal will have components of $25 \mathrm{kHz}, 75 \mathrm{kHz}, 125 \mathrm{kHz}$, etc. (odd values of k). Since the bandpass filter' s cutoff frequencies are 27.5 kHz and 57.5 kHz only the even spectral component, $k=2$ will pass but it has an amplitude of zero and so no signal will pass.

BME 333 Biomedical

Biomedical Signals and Systems

$$
\text { Quiz } 2
$$

4. The following periodic signal is passed through an idea bandpass filter with cutoff frequencies of

$$
x(t)=\left\{\begin{array}{cc}
1 & 0 \leq t<20 \mu s e c \\
0 & 20 \mu \mathrm{sec} \leq t<40 \mu \mathrm{sec}
\end{array}\right.
$$

b) Since the bandpass filter's cutoff frequencies are 65 kHz and 85 kHz , spectral component $k=3$ passes.

Biomedical Signals and Systems Quiz 2

4. The following periodic signal is passed through an idea bandpass filter with cutoff frequencies of

$$
x(t)=\left\{\begin{array}{cc}
1 & 0 \leq t<20 \mu \mathrm{sec} \\
0 & 20 \mu \mathrm{sec} \leq t<40 \mu \mathrm{sec}
\end{array}\right.
$$

c) Since the low filter' s cutoff frequency is 200 kHz , the spectral component for $k=0(D C), 1(25 \mathrm{kHz}), 3$ $(75 \mathrm{kHz})$, and $5(125 \mathrm{kHz}) 7(175 \mathrm{kHz})$ pass.

Final Answers

4. The following periodic signal is passed through an idea bandpass filter with cutoff frequencies of

$$
x(t)=\left\{\begin{array}{cc}
1 & 0 \leq t<20 \mu \mathrm{sec} \\
0 & 20 \mu \mathrm{sec} \leq t<40 \mu \mathrm{sec}
\end{array}\right.
$$

d) Since the band elimination filter' s cutoff frequencies are 210 kHz and 230 kHz , only the spectral component for $k=9(225 \mathrm{kHz})$ is blocked.

Biomedical Signals and Systems Quiz 2

5. Calculate the Transfer Function $V_{\text {out }}(j \omega) / V_{\text {in }}(j \omega)$ for these circuits and sketch the Bode plots:

Biomedical Signals and Systems Quiz 2

5. Calculate the Transfer Function $V_{\text {out }}(j \omega) / V_{\text {in }}(j \omega)$ for these circuits and sketch the Bode plots:

None of the signal gets through the filter.

