ACTIVITY 1:

Designs with Half-squares:

Materials: A roll of stick back magnetic tape, 1 steel tray, a black
marking pen, colored magic markers, rubber cement, half-square
template found on Worksheet W1l-1, 3 sheets of graph paper.

1.

T

Work in teams of two people. One member of the group cuts out 25
squares from the template; the other member cuts 25 lengths of
tape. .

Glue squares to the tape segments with rubber cement,
Construct a few patterns on your metal tray.

Notice that you can make 4 different patterns with 1 square if you
rotate the square through 4 quarter-turns. How many - patterns can
you make with 2 squares ? Sketch the patterns on the sheet
of graph paper. Which of these patterns has a plane of mirror
symmetry (one half of the pattern reproduces the other half when
placed against the mirror)? Indicate the position of the mirror
on the graph paper. Which patterns are identical when you rotate
the tray through a half-turn?

How many 2x2 patterns can you make with 4 squares? Sketch a few
patterns on your graph paper (there are too many to record them
all) . 1Include at least two patterns that have mirror symmetry, 1
pattern that is identical after a half-turn, and 1 pattern that is
identical after a quarter-turn. :

Although there are many 2x2 patterns, they cannot be considered to
be distinctly different. They can be separated into either
symmetric (identical after either a rotation of 1/4 or 1/2-turn or
a reflection) or nonsymmetric patterns. For each nonsymmetric
pattern, there are exactly 8 patterns that are either rotations or
reflections of this pattern. These 8 transformations constitute
what is known in mathematics as a group. The group is called a
Klein group. The 8 transformations of a square are illustrated in
Figure 1-1. "

Construct an interesting 4x4 or 5x5 pattern.

The Baravelle Spiral

1;

Figure 1-2 shows how to create a Baravelle spiral. Use Worksheet
W1-2 to create the spiral. Use magic markers to color the
appropriate half-squares. Try to find an interesting color
scheme.

Worksheet W1-3 presents space to create a design with up to nine
Baravelle spirals similar to the one shown in Figure 1-3.
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Baravelle Spiral
within a Square
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riven square ABCD

~ Locate the midpoints of
.B. BC.CD and DA .

Llabel them E, F, G and H,
=spectively.

. Toin them with line seg-
~ents to form square EFGH.

. In the same way, join the

aidpoints of the sides of
"FGH to form another square.

5. Repeat the process until
the final square is the desired
size.

6. The “spiral” shape becomes
visible when the triangles are
shaded as illustrated in the
diagram.

Now the resulting figure is 2
Baravelle Spiral.

Project

1 Using this square as your
inspiration, create an allover
pattern with the Baravelle
Spiral. Or develop a variatior
of your own in another regu-
lar polygon. Use a personal
color structure for your fin-
ished work.
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Activity 2:
Materials:

circle master compass
math ruler

magic markers

tracing paper
triangular grid paper

Group 1 - Infinite Pattern Factory: triangular circle grid

1. Refer to page 1 of: "The Infinite Pattern Factory
(IPF) ." Create an array of at least 20 circles. Connect the

centers of the circles to create a grid of equilateral
triangles.

2 : Use tracing paper and the circle grid on page 2 or 3 of IPF
to draw one of the patterns of Pattern Puzzle A on page 3.

Try drawing other patterns found on page 6 or try to invent
one of your own.

i Use tracing paper and the underlying triangular grid to draw
one of the patterns shown in Pattern Puzzle B. Other _
patterns are found on page 6 or invent one of your own on a
blank sheet of triangular grid paper.

4. Refer to the instructions on page 7 to create a six pointed
star with a triangular grid within it (steps 1-4). Try to
find one of the patterns shown on page 8.

5 Create the four varieties of star patterns described in steps
5-8. Use magic markers to color one of the stars.

Group 2 - Infinite Pattern Factory: square circle grid

T Refer to the instructions on page 9 of: "The Infinite Pattern
Factory (IPF)." Carry out steps 1-5 to create at least 20
circles of the square network of circles. Draw the circles
lightly with a pencil. Draw +hem ow WorKsheet W2 -,

2, Use tracing paper and continue with steps 6-9 to create the
pattern in step 9.

B Use tracing paper to find two of the patterns on page 12
hidden in the circle grids of pages 10 or 11.

4. Create an 8 and 16 pointed star by following steps 1-8 on
page 13. Use magic markers to color on of these stars.



Activity 3: Three Dimensional Structures

Lesson 1l: Construction of polyhedra with marshmallows and
toothpicks.

Materials: 1 bag of miniature marshmallows (Kraft brand) and one box
of round toothpicls for every 3 students.

Exercises:

1. Permit the students a period of free play to get used to building
structures with the marshmallows and toothpicks. (15 minutes are
recommended) .

2. Have students find as many planar patterns that they can such
that the same number of toothicks are incident to each
marshmallow with the exception of the marshmallows on the
boundary, i.e., imagine that the pattern that the student
constructs would continue on indefinitely with this constraint.
This can be done in only three ways if all faces are congruent.
Can you find them on a peice of triangular graph paper (see
Figure 3-1)? There are also 8 additional tilingls that use more

than one kind of face. These are known as semiregular tilings of
the plane. How many of them can you £ind? They are shown in
Figure 3-2.

3. Make a connected cycle of about seven marshmallows and
toothpicks. See what kind of designs you can make. You can bend
the toothpicks into three dimensional space. Now remove one
marshmallow and one toothpick and reconnect the cycle to see what
kind of designs you can make with the new 6-cycle. Successively
remove toothpicks and marshmallows to form
5,4, and finally 3-cycles, each time creating patterns. Note
that when you get to a 3-cycle (triangle) there are no degrees of
freedom and we arrive at the general principle that triangles are
the basic building blocks of "rigid" structures.

4. Have students construct two triangles from six marshmallows and
six toothpicks. Now challenge the students to rearrange the six
toothpicks so as to form four equilateral triangles. The only
way this can be done is to construct a tetrahedron, one of the
Platonic soldis, shown in Figure 3-3. This exercise shows that
the geometry of 3-dimensional space differes from 2- dimensional
space in that it is more "roomy." The extra triangles
materialize due to a kind of synergetic interaction between the
toothpicks and the space. Have the students verify that the
tetrahedron is rigid. It stands up firmly without collapsing.
The rigidity is due to its faces being all triangles.

5. Next have the students construct a square and observe that it is
not rigid. Ask them to make the square rigid by adding the
fewest number of additional toothpicks and marshmallows. The
result will be an octahedron, shown in Figure 3-3, another one of
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the Platonic solids.

Now ask the students to construct a cube. Before doing this,
have them predict whether or not it will be rigid. Since it is
not rigid, have the students attempt to make it rigid by placing
a toothpick along a diagonal of each face. If this is done
properly, the octet truss shown in Figure 3-4 results. The octet
truss is the basis of space frames.

Now lead the students in an exercise to construct a dome made
completely out of triangles. To do this have them place five
toothpicks in one marshmallows and then ring them by toothpicks
so as to form five equilateral triangles surrounding the central
marshmallow as shown in Figure 3-5. Note that these triangles
will not lie in a plane (why?). Next construct five additional
triangles on the outer edges as shown in Figure 3-5. If a belt of
toothpicks are used to connect the vertices or these outer
triangles, and the resulting figure is capped by another pentagon
of equilateral triangles identical to the original, a fourth
Platonic solid known as the icosahedron (see Figure 3-3) formed.
This polyhedron is the basis of the geodesic dome of Buckminster
Fuller.

After a short discussion of the Platonic solids the students can
try their hands at creating more permanent models by folding up
the paterns shown in Figure 3-3, from the plane. See also the
enclosed handout. Octahedra and tetrahedra with identical edge
lengths are particularly versatile. If you construct several of
these in a ratio of 2 tetrahedra for each octahedron, you can use
these as building blocks to create more complex structures.
Attaching vel-cro to the faces will enable you to stick them
together.

The Platonic polyhedra are "perfectly symmetric" in other words
they look identical when viewing them face-on, vertex-on, or
edge-on. It is a good exercise to take your marshmallow and
toothpick Platonic soldis and draw their face-on, vertex-on, and
edge-on views.

In addition to the tetrahedron, octahedron, and icosahedron,
there are exactly five additional polyhedra that can be made
with triangle faces. These are called deltahedra. Try to
create some of them with your marshmallows and toothpicks. They
are shown in Figure 3-6 in case you have trouble finding them
all.
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Activity 3:

As you construct these polyhedra in the workshop record the following
information:

THE PLATONIC POLYHEDRA

NAME F A% E jo} o] RIDGID? F+V-E

The spherical deviation & of the vertex of a polyhedron is defined
as,

8 =360 - (sum of the angles © around a vertex)
where © 1is a typical face angle.

After you have constructed a Platonic polyhedron complete this table:

SUM OF g
AROUND
A
NAME q \Y = VERTEX S S xv
° o ) ]
TETRAHEDRON 3 4 | Go /180 /30 720
CUBE
OCTAHEDRON
DODECAHEDRON
ICOSAHEDRON
WHAT DO YOU NOTICE? ‘
F = Number of faces P = Number of edges per face
V = Number of vertices q= Number of faces surrounding each vertax

or edges per vertex
E = Number of edges



TABLE 1.  THE PLATONIC SOLIDS

Name F v | 3 | D a F+Va-E
Tet.rahedrcn 4 4 6 3 2
Cube 6 8 12 4 3 2
Octahedron 8 6 12 3 4 2
Dodecahedron 12 20 30 5 3 2
[cosahedron 20 12 30 3 B 2
Fie 3-| %
(a)

e .~Theghmemgph:ﬁungnaqdeightsemimgularﬁﬂngsofthaphne.'I‘he
tiling 3* 6 exists in two mirror-symmetric (enantiomorphic) forms,
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rasssa 2Z: The =t=iazgle is the Snly polwvssa that is sigid.
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Piecs and reconnect the fasteners zo Sreate a closed
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Lesson 3: 3uilding a stsucsure wish “he =Tiangle as ke basis
elemenz

Materials: 96 cazdboard rectangular pieces 1l inches by two
inches, 36 paper Zasteners

Zstimated Time ¢f Accompli ning lLesson: Thre

45 minutes perizés

Underlying Razicnale: Zaving explored the idsa @f =ha =ianrla
. as a rigid structure, we ars now gains
Lo expleore the function 0f =he #o

- -

make a gquadrilazeral.

Procedure: Step 1 - Cennec- 4 Bleces of cariboar3 in crisr -

0

Step 2 On each vertex place thres cardboard Disces.

Label each piecs a-b-c. (see diagram)

Step 3 - Ccmnect slat a of each vertax with sla:s ¢
of its neighboring vartax, four triangles
should have been completed.

Step 4 3ezwean. each 4riangle there is a single slae &,

Cennect the outer most vertex of eacn triangle
(where a and c meet) to slat b wis=h a new
Piece of cardboard. Since each slat b is
between two triangles, a bels of 8 cardboaz3
Pieces will be needed =0 connect the trianglas
to slat b. At this ocoint the size of =he
ecges are not large encugh £0 main=ain a swo-
dimensicnal design. Zach slas should cu=~ve

Dy the tension and an cbjecs rasembling a
basket will be formed. (see diagram)
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Place two slass on evary joint of ==e ac=a-
gonal Selt. Connect neighboring slas=s =o
Create eight new triangles. Then connsc=-

the outer vertices of neighboring tTiangles oy
adding eight more cardboard pieces. N

~

-~ Step 6 - Repeas Step 5 until all 96 slass ars u=ilized.
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Step 4

) i Side view
8 Schematic

Ques=ions: Where dc we sae tTiangles being used 2s bdassc
gesneaTEn?
What would hnacpen if we made the =ower out cZ
cuadzilazarals? ' '

Vecabulary: Quadzilateral



Activity 4
Materials

Construction paper
Magic markers
scissors

file folders

graph paper

Group 1 - Tangrams and Amish Quilt Patterns

Tangrams is an ancient Chinese puzzle made up of pieces that
come from a dissection of square into seven polygons: five 45-
degree right triangles, a square, and a parallelogram as shown on
Worksheet W4-1. The earliest reference to tangrams was in a
Chinese book dated 1813. It was the Rubik’s cube of the
nineteenth century due to its popularity in those days.

1. Cut out the tangram pieces found on Worksheet W4-1. Assemble them
to reproduce the pictograms shown in Figure 4-1.
vYou must use all of the tangram pieces once only with no overlaps
in each pictogram.

2. Try to create an octagon from three tangram squares and two
tangram diamonds. Take it as a challenge to recreate the tangram
square. Can you construct a triangle using the tangram pieces?

3. Create an "Amish quilt" pattern using the tangram pieces found on
Worksheet W4-2. You may use any of these shapes that you wish,
and you may repeat a shape as many times as you wish to create a
pattern reminiscent of an Amish quilt such as the one shown in
Fig. 4-2. It may be helpful to first cutout the shapes from the
worksheet and then trace them onto a piece of stiff cardboard such
as a file folder. The cardboard template can then be used to

recreate these polygon shapes on your construction paper.
Group 2 - Golden Mean and Golden Triangle Patterms

1. The golden mean proportion comes up frequently in art,
architecture, music, and science. The golden mean is symbolized
by @ and equals b = 1 +A5)/2 = 1.618... In a large
population, it is found that the ratio of your bellybutton to the
ground divided by the the top of your head to your bellybutton is
approximately the golden mean. In other words your bellybutton
divides your length by the "golden section" (try this!) the ratio
b




2. The following procedure can be used to divide a line into the
golden section (the ratio  :1)

Begin with a line segment AB drawn on a piece of graph paper
Draw AC = 1/2 AB perpendicular to AB
Circular arc CA intersects CB at F.

Circular arc BF intersects AB at G, breaking AR into the
golden section.

Lo ow

B L
[] JG [ A
Fgmxatng Dividing a line into its golden section
with compass and straightedge.

3. After you have created the two lengths of the golden section,
you can use these to create a regular pentagon since the ratio

of diagonal to side of a regular pentagon is ¢ : 1. Follow
this procedure:

a. Begin with a line segment divided into the golden section
(see 2 above). Mark off the shorter of the two lengths
(length = 1 unit) of the golden section on your graph paper.

b. Create an isoceles triangle with base 1 unit and side equal

to ® units (the longer length of the golden section) as
shown below.

c. With your compass set to 1 unit, recreate the other four
sides of the pentagon.

4. Two diagonals placed into a regular pentagon divides it into
two species of "golden triangles" as shown in 3 above.

Ppeefts A pentagon subdi-
vides into one type 1 and two
type 2 golden triangles.
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formed at different scales. In this figure the base angle of
triangle I is successively bisected to produce triangles I and II
at a smaller scale. Worksheet W4-3 presents a template from
which to cut out species of triangles I and ITI. Create a pattern
with construction paper using golden triangles I and II at more
than one scale. It may be helpful to cut the triangles out of
the template and reconstruct them on a piece of stiff cardboard

such as a file folder, and then use the template to trace onto
construction paper.

[t

Figure 3.13 Whirling golden tri-
angles.

2

Group 3 - The Brunes Star

1.

The remarkable Brunes Star is shown in figure 4-3. A

square divided into four half-squares is shown in Worksheet
Wd-4. By placing two diagonals into each half-square you can
recreate the Brunes star. Create an interesting design by using
magic markers to color this star.

This star is made up entirely of 3,4,5-right triangles or
fragments of 3,4,5-right triangles. Examine the demonstration
corkboard to see how it is created from four large 3,4,5-right
triangles. Figure 4-4 shows some of the measurements. 3,4,5-
right triangles are present at four different scales. Can you
identify some of them.

At different levels, the Brunes star divides the width of the
star naturally into either 3,4,5,6, or 8 sublengths. Can you
find these dissections? If you place the point of your compass
at the lower left-hand vertex of the square and sweep an arc of a
circle from the bottom edge to the left side of the square a line
drawn from left to right on the square is approximately divided
into 7 equal segments. Try this. The result is shown in Figure
4-5;

Worksheet W4-5 illustrates a square divided into four subsquares.
With a pencil, lightly draw four Brunes stars, one inside of each
square. By judiciously removing lines and coloring the remaining
spaces, create an interesting composite pattern.
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SQUARE GRID OF CIRCLES
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TANGRAMS
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The Golden Triangle
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