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Introduction

The study of knots is a branch of topology. This introduction will be intuitive, visual, and
hands-on. One generally ties a knot with a piece of string. When the ends are loose, the
knot is referred to as an open curve in space, or open knot. When the ends are joined, the
knot is referred to as a closed curve in space, or closed knot. Henceforth a knot will refer
to a closed knot. Thus to form a knot, we tie an open knot and then join the ends.

One can form a wire knot and then dip the wire knot in a solution of water, liquid soap,
and glycerin. A soap film surface forms with the wire knot as boundary. The surface
tension of the soap solution causes the surface to take a shape with minimum surface area
for surfaces with the wire as boundary. Hence the surface is referred to as a soap film
minimal surface (sfms). These surfaces are a very Interesting subject for presentation in
grades 4 and above. There is the question of whether the sfims is one-sided or two-sided.
Generally the sfims is one-sided. There is then the question of how to deform the knot to
obtain a new configuration of the knot that has a two-sided sfms. This motivates the basic
topic of knot deformation.

We consider a knot to be made of a flexible material. Allowable knot deformations are
bending, twisting, stretching, or shrinking. We say two knots are equivalent when one
can be deformed into the other. A basic question is when are two knots equivalent? We
will discuss this question for some basic examples.



The Trefoil Knot.

We will first tie a so-called trefoil knot. We can use a piece of string, plastic tubing, or
wire. Let us suppose we have a piece of string with ends A and B as in Figure 1(a). We
first cross B over A as in (b). Note that we leave little gaps on each side of the B-part to
denote the B-part is the over-crossing and the A-part is the under-crossing. We now bring
B through the center as indicated by the dashed lines in (b) to obtain (c). We can now pull
the two ends as indicated by the dashed lies in (c) to obtain (d). In (d) we have an open
overhand knot. We now join the ends A and B to obtain the closed knot in (¢). Note that
we have left little gaps to indicate the over/under crossings. We refer to the picture in ()
as a knot diagram. This particular diagram is referred to as a trefoil knot. The name refers
to the three outer “leaves”. In Italian three is tre and leaf is foglia and the plural is foglii
so in Italian the name would be trefoglii. In English the name is trefoil.

To join the ends A and B, we can use a piece of scotch tape for string. For plastic tubing,
we can use a short piece of insulated wiring that fits inside the tubing. For a wire knot, we

can twist the ends together.
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Tying A Trefoil Knot

Figure 1.



One can consider the trefoil diagram in Figure 2(a) as a map where each region is a
country. The map can be two-colored using shaded and white to distinguish regions that
share a boundary. This is called checker boarding the diagram. The checker boarding is
shown in (b). One can first color the upper left region shaded. Since this outer region
shares a boundary with the center region, the center region will be white. Therefore the
remaining-two outer regions will be shaded. Thus regions that share a boundary have
different colors shaded and white.

The checker boarding can be used to predict the corresponding soap film minimal surface
(sfms) for a wire model of the knot. Namely, the shaded regions will correspond to
surface and the white regions will correspond to windows or spaces. In (b) there is one
white central region so the corresponding sfms will have one central window, When a
wire model is dipped and removed, the initial sfms will have a central disk as in (c). We
represent a transparent sfms by lines. The central disk can be punctured to obtain the final
sfms in (d), as predicted by the checker boarding in (b).

Checker Boarding the Diagram to Predict the SFMS.

Figure 2.

We will now consider two more examples. In Figure 3(a) we have a knot diagram. The
checker boarding is shown in (b). In this case there are upper and lower shaded regions
corresponding to predicted surface and two horizontal white regions corresponding to
predicted windows. We can now dip a wire knot corresponding to the diagram in Figure
3(a) to obtain the sfms in (c). There are two horizontal disks that can be punctured to
obtain the sfms in (d), which has upper and lower surface regions and two horizontal
windows as predicted from the checker boarding in (b).



(a)

Figure 3.

We have another knot diagram in Figure 4(a) and the checker boarding is shown in (b). In
this case there are three shaded regions corresponding to surface and two vertical white
regions corresponding to windows. We can now dip a wire knot corresponding to the
diagram in (a) to obtain the sfms in (c). There are two vertical disks that can be punctured
to obtain the sfms in (d), which has three surface regions and two vertical windows as
predicted by the checker boarding in (b).
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We will discuss knot deformation below. It will then be shown that the diagrams in
Figures 3(a) and 4(a) can be obtained by deforming the trefoil diagram in Figure 1(e).
Thus the diagrams in Figures 3(a) and 4(a) are also diagrams of a trefoil knot. We will
first discuss one-sided and two-sided surfaces.



One-sided and Two-Sided Surfaces.

We will start with a paper circular band as shown in Figure 5. The circular band has two
boundary edges: an inner circular edge C, and an outer circular edge C, which are
outlined in black. The circular band also has two sides: a front side and a back side. In
order for a bug on the front side to walk onto the back side, the bug would have to cross
over either C, or C,.

Figure 5.

We will now cut the circular band as indicated by the dashed line in Figure 6(a). We give
the bottom right end a half-twist, as indicated by the arrow, and then join the two ends to
obtain the surface in (b). Note that the half-twist results in joining the front side to the
back side so that the surface in (b) has only one side. A bug could walk from any point on
the surface to any other point without crossing over the boundary edge. The surface also
has only one edge C consisting of C; joined to C,. This surface is referred to as a Mdbius
band, named after the German mathematician August Mébius (1790-1868).

cut twist
(@)

Figure 6. (b



The edge of the paper M6bius band in Figure 6(b) is outlined in black and is shown
1solated in Figure 7(a) as a diagram of a closed curve in space. It is really not knotted and
1s referred to as a loop. A loop 1s also referred to as an unknor or trivial knot. The diagram
can be checker boarded as in (b). There is just one shaded outer region and one white
ner region. A wire model of the edge can be dipped to obtain the initial sfms in (c) with
an inner disk. This disk can be punctured to obtain the sfms in (d) predicted by the
checker boarding in (b). The sfms in (d) corresponds to the paper Mébius band in Figure
6(b). Thus a Md&bius band can occur naturally as a sfms as in (d).
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A Mobius Band as a SFMS.

Figure 7.



Triple Twist Mobius Band.

We will now form a triple twist Mobius band. In this case we start with a long paper
rectangle, which works out better then a long circular band for this example. A ratio of
length to width of 10 works-say 2 inches wide and 20 inches long. When we give one end
three half-twists, we obtain the surface in Figure 8(a). This surface will also have only
one side and one edge. The edge is outlined in black. The dashed lines indicate the
continuation of the edge behind the surface. A bug travelling on the surface can move
from any point to any other point without crossing the edge. The single isolated edge is
shown in (b). Note that the diagram in (b) is a trefoil knot. If we round out the straight
parts of the edge, we obtain our previous diagram of a trefoil knot as in (c). Thus the edge
of a triple twist M&bius band is a trefoil knot. The sfms for a wire trefoil knot in Figure
2(d) is shown again in Figure 8(d). This sfms corresponds to the paper triple twist Mébius
band in (a). Thus a triple twist M6bius band can occur naturally as the sfms on a trefoil
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A Triple-Twist M&bius Band as a SFMS.

Figure 8.



Since a Mé&bius band is a one-sided surface, we can color a Mébius band with one color
red. The single- twist and triple- twist Mdbius bands are shown in red in Figures 9(a) and
(b), respectively.
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Figure 9.

The Mébius bands in Figure 9 are basic one-sided surfaces. We will now discuss basic
two-sided surfaces. We begin with a rectangular piece of paper, which is red on the front
and blue on the back, as in Figure 10(a). The side edges are outlined in black. If we give
the bottom a half-twist to the right, we obtain the two-sided twisted strip in (b), where the
edges cross in the middle as shown. If we give the bottom a half-twist to the left, we
obtain the two-sided twisted strip in (c), where the edges cross in the middle as shown.
The main point is that the colors switch at the crossing from red at the top to blue at the
bottom. If we looked at the rear view, the colors would switch at the crossing from blue
at the top to red at the bottom. Thus in either view, the colors switch at the crossing in the
two-sided case.
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Predicting Whether the SFMS is One-Sided or Two-Sided.

For the one-sided surfaces in Figure 9, we see that the color does not switch at a crossing.
For the two-sided case in Figure 10, the colors do switch at a crossing. Let us now
consider a sfms for a diagram. At each crossing as in Figure 11(a), a sfms will have a
half-twist as in (b). If we consider the surface colored, then in the one-sided case, the
color does not switch as in (c). In the two-sided case, the colors do switch as in (d).
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Now given the checker boarding of a knot diagram, the surface corresponds to the shaded
regions. The surface will be two-sided if we can color the shaded regions red and blue so
that we can satisfy the switching condition that the colors switch at each crossing, as in
Figure 11(d). If we cannot satisfy the switching condition that the colors switch at each
crossing, then the surface is one-sided, as in Figure 11(c).

We will first discuss an example where the switching condition can be satisfied. Consider
the sfms in Figure 3(d), as shown below in Figure 12(a). The sfms has an upper region
and a lower region. We can color the upper region red, as indicated by an R in (b). In
order that the colors switch at the crossings, we color the lower region blue, as indicated
by a B in (b). We now see that the colors switch at each of the three crossings. The
colored sfms is shown in (c).
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Figure 12.

We will next consider the sfms in Figure 4(d), as shown below in Figure 13(a). The sfms
has three regions. We can color the left region red as indicated. In order to satisfy the
switching condition at the center crossing, we would have to color the right region blue.
In order to satisfy the switching condition at the lower left crossing, we would have to
color the lower region blue. But then the switching condition would not be satisfied at the
lower right crossing since the right region and lower region are both blue. Thus the
switching condition cannot be satisfied at each crossing so the surface is one—sided, as
indicated by all red in (b). The colored sfms 1s shown in (c).

Figure 13.



For another example, consider the sfims for the trefoil knot in Figure 2(d). This sfins has
three regions arranged left, right, and below as in Figure 13(a). Thus the sfims is one-
sided. We had previously deduced this since the sfims corresponded to a one-sided triple
twist M&bius band as in Figure 9(b). Here we deduced the sfims is one-sided because the
switching condition could not be satisfied. We will consider additional examples of one-
sided and two-sided surfaces after we discuss knot deformations.

Knot Deformations.

As mentioned in the introduction, we consider knots to be made of flexible material.
Allowable knot deformations are bending, twisting, stretching, and shrinking. However,
we are not allowed to cut the knot, deform, and then rejoin. Two knots are said to be
equivalent when one can be deformed into the other.

We will describe knot deformations by using knot diagrams. For our first example,
consider the trefoil diagram in Figure 14(a). We deform by lifting the point P up as
indicated by the dashed lines in Figure 14(a). The deformed diagram is shown in (b)
where we have numbered the three crossing points 1, 2, and 3. We can now reshape the
diagram in (b) by moving crossings 1 and 3 up and 2 down, as shown in (c). Note that the
diagram in (c) is the same as in Figure 3(a). Thus this diagram is also a diagram for a
trefoil knot. We will refer to the diagram in Figure 14(a) as rrefoil 1. We have shown
trefoil 1 has a one-sided sfms that is a triple —twist M&bius band. We will refer to the
diagram in Figure 14(c) as trefoil 2. We have shown above that trefoil 2 has a two-sided
sfms. Thus in Figure 14 we see how to deform trefoil 1 with a one-sided sfms into trefoil
2 with a two-sided sfms. We could also deform trefoil 2 back to trefoil 1 by reversing the
steps in Figure 14 by lowering the point P. Thus trefoils 1 and 2 are equivalent.
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For our next example, we again start with trefoil 1 in Figure 15(a).The diagram of trefoil
1 has three crossings. We will now obtain an equivalent diagram with four crossings. We
deform trefoil 1 by giving the bottom a half-twist to the right as indicated by the arrow in
Figure 15(a). The deformation is indicated by the dashed lines. The resulting diagram is
shown in (b). This diagram has four crossings and is referred to as srefoil 3. Note that we
can deform trefoil 3 back to trefoil 1 by untwisting the bottom. Thus trefoils 1 and 3 are
equivalent. Note that we previously discussed trefoil 3 in Figure 4 and Figure 13 where
we saw trefoil 3 has a one-sided sfms.
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Figure 15.

We have now shown that trefoils 1 and 2 are equivalent and trefoils 1 and 3 are
equivalent. Note that we could deform trefoil 2 into trefoil 1 by a first deformation and
then deform trefoil 1 into trefoil 3 by a second deformation. We can start with trefoil 2
and apply the first deformation followed by the second deformation to deform trefoil 2
into trefoil 3. By reversing the deformations, we can deform trefoil 3 back to trefoil 2.
Thus trefoils 2 and 3 are equivalent. Therefore trefoils 1, 2, and 3 are all equivalent. They
are equivalent diagrams of the trefoil knot.
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Alternating Diagrams.

The diagram for trefoil 1 is shown in Figure 16(a). A direction for moving around the
knot is indicated by the arrows. The crossings are labeled 1, 2, and 3. Suppose we start at
point P and move in the direction of the arrows. We first cross over at 1; then cross under
at 2; then cross over at 3. Returning to 1, we cross under at 1;then cross over at 2; and
cross under at 3 before returning to P. Thus the crossings alternate over, under, over,
under, over, under. In this case we say the diagram is an alternating diagram. We could
also reverse the direction of the arrows and still obtain an alternating diagram. That is,
whether the diagram is alternating does not depend on the choice of arrows. The diagram
for trefoil 2 is shown in Figure 16(b). Starting at P, one can also check that this is an
alternating diagram. The diagram of trefoil 3 is shown in Figure 16(c). The diagram of
trefoil 3 is not alternating. Starting at P, we cross over at 1, cross over at 2, cross under at
3, return to 1 and cross under, cross over at 4, etc. In this case the crossings are over,
over, under, under, etc.
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Figure 16.

We have now seen that trefoils 1 and 2 are both alternating diagrams with 3 crossings.
Trefoil 3 is not alternating with 4 crossings. Thus equivalent diagrams may or may not be
alternating and may have different numbers of crossings. The crossing number of a knot
is the least number of crossings in a diagram of the knot. The trefoil knot has diagram
trefoil 1 with 3 crossings and it can be shown that there is no diagram for the trefoil knot
with less then 3 crossings. Thus the crossing number of the trefoil knot is 3. A standard
Knot Table is shown in Figure 17. Here knots are listed according to their crossing
number.



There is one knot 3; with crossing number 3, which is the trefoil knot with diagram
trefoil 1. There is one knot 4, with crossing number 4 which is referred to as the figure-
eight knot and will be discussed in detail later. There are two knots with crossing number
5, three knots with crossing number 6, seven knots with crossing number 7, and twenty-
one knots with crossing number 8. In Italian five is chinque and 5, is referred to as a
chinquefoil. Seven in Italian is sette and 7, is referred to as a settefoil.

In general, the knot denoted by Nj has crossing number N and the diagram has N
crossings. Since a diagram with crossing number N cannot be equivalent to a diagram
with a smaller number of crossings, knots in the Knot Table with different crossing
numbers cannot be equivalent. Furthermore it can be shown that the knots with the same
number of crossings in the Knot Table are not equivalent. Knots that are not equivalent
are said to be distinct. Thus all the knots in the Knot Table are distinct.

One can check that all the diagrams in the Knot Table are alternating except for the
diagrams of the last three knots 8,9, 820, and 8. In general, a knot is said to be an
alternating knot if it has an alternating diagram. Thus all the knots preceding the last
three knots are alternating knots. A knot is non-alternating if it does not have an
alternating diagram. It can be shown that the last three knots are non-alternating. Thus no
matter how one of these knots is deformed, one never sees an alternating diagram.

We will say that a diagram is two-sided if the switching condition is satisfied. Otherwise
the diagram is one-sided. The only two-sided diagrams in the Knot Table are 5,, 75, and
7.. The red-blue coloring for these diagrams is shown in Figure 18 after the Knot Table.
One can check that all the other diagrams are one-sided. In particular, all the diagrams
with 8 crossings are one-sided. However, just as the one-sided diagram trefoil 1 can be
deformed into the two-sided diagram trefoil 2, every one-sided diagram in the Knot Table
can be deformed into a two-sided diagram by some deformation. In particular, this will be
shown for the fi gur.q_-e_i ght diagram 4, below.
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As stated above, the only two-sided diagrams in the Knot Table are 5;, 7,, and 74. The
red-blue colorings of the sfms are shown in Figure 18. All of the other diagrams in the -
Knot Table are one-sided. A selection of six one-sided diagrams are shown in Figure 19.
As mentioned above, each one-sided diagram can be deformed to obtain an equivalent
two-sided diagram. In particular, an equivalent two-sided dxagram will be gwen below
for the figure-eight knot 4,
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Two-Sided Diagrams

Figure 18.

One-Sided Diagrams

Figure 19.



The Figure-Eight Knot 4;.

We will now discuss the figure-eight knot 4, in detail. The diagram is shown in Figure
20(a). The diagram of 4, is alternating as can be seen by starting at P and following the
direction of the arrows. Note that the diagram of 4, at the crossings 1 and 2 looks like the
diagram of trefoil 3 in Figure 15(b). However, the crossings at 3 and 4 are reversed from
over/under to under/over. In this sense, 4, is related to trefoil 3. The sfms of 4, in (b) is
similar to the sfms of trefoil 3 in Figure 4(d). In particular, the sfms of 4, is one-sided as
shown in (c). '
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The Figure-Eight Knot 4;.

Figure 20.

On the following two pages we will show how to tie the figure-eight knot and how to
deform the one-sided diagram into a two-sided diagram.
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We have seen that the diagram of the figure-eight knot can be obtained from the diagram
of trefoil 3 by reversing the two lower crossings. We will now show how to tie the
figure-eight knot directly. In Figure 21(a) we begin with two loose ends A and B and
cross B over A, as in (b). We now bring B behind A, as indicated by the dashed lies in (b)
to obtain (c). Next we move B over and through the loop as indicated by the dashed lines
in (c) to obtain (d). We now join A and B to obtain (¢). The diagram in (e) is now
reshaped by rearranging the crossings 1,2,3,4 to obtain the diagram for 4, in (f).

) (@) )

Tying The Figure —Eight Knot

Figure 21.
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We will now deform the one-sided diagram in order to obtain a two-sided diagram, as
shown in Figure 22. The point P on the right is lifted over to the left. The deformation is
indicated by the dashed line in (a). The deformed diagram is shown in (b) with the
crossings labeled 1,2,3,4,5. We now reshape this diagram as in (c¢) by moving 1 down so
2 is above 1. Crossing 4 will move down and 5 will move up at the top. Crossing 3 will
move over across from 4. We now have the equivalent diagram in (c). The checker
boarding of the diagram in (c) is shown in (d). The corresponding two-sided sfms is
shown in (e).
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Deforming The One-Sided Diagram of 4, Into A Two-Sided Diagram.

Figure 22.



Part Four

Visualizing Knots and Seap Film Minimal Surfaces:
Mirror Image
Writhe and Knot Equivalence
Figure Eight Knot
Complementary Two-Sided Diagrams

Preface

We will first introduce the mirror image of a knot. It is then shown that the figure eight
knot is equivalent to its mirror image. In order to decide whether a knot can be equivalent
to its mirror image, we will introduce the writhe of a diagram. The writhe is a number
that is easy to compute and it can be shown that the writhe must be zero if a reduced
alternating knot is equivalent to its mirror image. Thus if the writhe is not zero, then the
knot cannot be equivalent to its mirror image. In particular, this will imply that a reduced
alternating knot with an odd number of crossings cannot be equivalent to its mirror

image.

We will introduce the projection of a knot in preparation for a detailed discussion of the
figure eight knot. In particular, we will see that the figure eight knot can be obtained from
the projection of trefoil 3. The standard diagram for the figure eight knot has a onc ='ded
sfms. It will be shown how to deform this diagram to obtain a diagram with a two-sided
sfms.

We will also discuss coloring the white regions of the checker boarding of a knot
diagram. If the white regions can be colored red and blue so that the colors switch at each
crossing, then a simple deformation called a flip will yield a two-sided diagram. Since the
white regions are the complement of the shaded regions, we say that the diagram is
complementary two-sided in this case.



Mirror Image

Consider placing a crossing in front of a mirror, as shown in Figure 1. For the crossing on
the left, the vertical line is the over-crossing and the horizontal line is the under-crossing.
However, in the mirror image on the right, the horizontal line is the over-crossing and the
vertical line is the under-crossing. This is because the horizontal line is closer to the
mirror so its mirror image will appear in front of the vertical line. Thus the crossings
switch in the mirror image: the vertical over-crossing becomes an under-crossing and the
horizontal under-crossing becomes an over-crossing.

~— I mirror

Figure 1.

In Figure 2 we have a trefoil knot shown on the left and its mirror image is on the right.
Note that at each crossing point 1,2,3 the over/under crossings switch to under/over in the
mirror image. Thus to obtain the mirror image of a knot, one switches the crossings at
each crossing point.
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Figure 2.

The mirror image of a knot diagram D is denoted by D™ In Figure 2, :?11 is_ shov.m on the
left and 3,™ is shown on the right. In Figure 3 we have 44, 63 , and their mirror images.
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Figure 3.
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It is natural to ask whether a knot is equivalent to its mirror image? The answer depends
on the knot. It will be shown below that if a reduced alternating knot has an odd number
of crossings, then the knot is not equivalent to its mirror image. In particular, 3,, 5;, and
5, are not equivalent to their mirror images. However, the figure-eight knot 4, is
equivalent to its mirror image. The deformation of 4; into 4,™ is shown in Figure 4.

We begin with 4, in Figure 4(a). We have numbered the four crossing points 1, 2, 3, 4 in
(a). The point P on the left moves to the right when the knot is deformed, as indicated by
the dashed lines in (a). The deformed knot is shown in (b). We now reshape the deformed
knot in (b) by moving crossing 1 to the right and moving crossing 2 to the left of 1, as in
(c). We also move 3 to the center and move 4 below 3, as in (c). The diagram in (c) is
actually 4,™ upside down. If we turn the diagram in (c) right-side up, we obtain 4, as
shown in (d ). Thus 4 is equivalent to its mirror image.

Figure 4.
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Writhe and Knot Equivalence

The writhe of a knot diagram will now be defined. The writhe is very useful for deciding
whether a knot is equivalent to its mirror image. In order to define the writhe, we choose
a direction on the diagram, as shown in Figure 5 for the diagram of 4.

Figure 5.

There are two possibilities at a crossing, as shown in Figure 6. We consider that the over-
crossing is a bridge that we are walking on in the direction of the arrows and the under-
crossing is a river below the bridge. If the river is coming from the right as in Figure 6(3)
then the crossing is a right-hand crossing and we assign +1 to the crossing. If the river is
coming from the left, as in Figure 6 (b), then the crossing is a left- hand crossing and we
assign —1 to the crossing.
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For the figure-eight knot 4, in Figure 5, there will be two right-hand crossings and two
left-hand crossings, as indicated in Figure 7. Remember to walk in the direction of the
arrows on the over-crossing in order to see if the direction on the under-crossing is
coming from the right or left. The writhe w is defined as the sum of the +1and —1 values
for all the crossings. In this case the sum is 1+1-1-1=0 so the writhe is w = 0.

In general, given a diagram D, we denote the writhe by w(D). Thus w(D) is the sum of
the +1 and —1 values for all the crossings in D. For the case in Figure 7, we found that
w( 4, )= 0. One can also check that w( 4,™) = 0; hence w( 4,) =w(4,™) = 0.
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Figure 7.

In Figure 8(a) we see that 3; has three right-hand crossings so w(3;) = 3. We refer to 3; as
the right trefoil. In Figure 8(b) we see that 3™ has three left-hand crossings so w(3,™) =
- 3. We refer to 3,™ as the left trefoil.
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right-trefoil = 3,, w(3;) =3. left-trefoil = 3;™, w(3;")=-3

Figure 8.

AR



In Figure 8, for D = 3| we have shown that w(D™) =-3 = —w(D) . We will nhow verify
that w(D™) = — w( D) for any diagram D. In Figure 9 we have a right-hand crossing for D
on the upper left. Note that when we switch the crossings for the mirror image, we obtain
a left-hand crossing on the upper right.
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Figure 9.

Thus the mirror image of a right-hand crossing is a left-hand crossing. Hence a +1
switches to a —1. Similarly, for a left-hand crossing for D on the lower left, the mirror
image on the lower right is a right-hand crossing. Thus the mirror image of a left-hand
crossing is a right-hand crossing. Hence a —1 switches to a +1. Since +1 =—1 x -1, we
can say that for either a right-hand crossing or a left-hand crossing, the value at the
crossing for the mirror image D™ is -1 times the value at the crossing for D . Thus to
obtain the writhe of D™, we multiply crossing values for D by —1 and add. This is the
same as first adding to obtain w(D) and then multiplying by —1. Hence we have the
following result.

Theorem 1. For any diagram D, w (D™) = —w(D).

For example, w(3,") =—w(3;) =-3 and w(4,")=-w(4,)= -0=0.
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Reduced Alternating Diagrams

In Figure 10(b) we have trefoil 1 with writhe w = 3. In (a) we have added an extra half-
twist or curl at the upper left. The diagram is still alternating but the extra curl is a right
hand crossing and adds a +1 to the writhe so the writhe is w = 4 in (a). Note that the
diagrams in (a) and (b) are equivalent since we can simply untwist the curl to deform (a)
into (b). Thus the diagrams are both alternating and equivalent but the writhe values w =
4 and w = 3 are different. When we deform the alternating diagram (a) into (b) by
removing the curl, we say the diagram in (b) is reduced alternating because the diagram
in (b) has no extra curls.

w=3
(a) (b)
alternati nq reduced al—fer‘na—h'nj

) @)

Figure 10.



Similarly in Figure 10(d) we have trefoil 2 with writhe w = 3. In (c) we have added two
extra curls. The diagram is still alternating but the two curls are left-hand crossings and
both —1. Therefore the writhe is w =3 —2 =1 in (c). The two diagrams in (c) and (d) are
equivalent since we can simply untwist the two curls to deform (c) into (d). Thus the
diagrams are both alternating and equivalent but the writhe values w =1 and w = 3 are
different. When we deform the alternating diagram (c) into (d) by removing the two curls,
we say the diagram (d) is reduced alternating because the diagram in (d) has no extra
curls. Since trefoil 1 in (b) and trefoil 2 in (d) are equivalent, we conclude that all four
diagrams in Figure 10 are equivalent but their writhe values are all not equal.

However, in the reduced alternating cases of trefoil 1 in (b) and trefoil 2 in (d), the writhe
values are both equal to 3. Thus for these examples the writhe values are equal for
equivalent diagrams only in the reduced alternating case. This result is true in general as
stated in the following theorem , due to M. B. Thistlethwaite and K. Murasugi.. The proof
of this theorem is beyond the scope of these notes. However, it is very useful for our
purposes.

Theorem 2. If diagrams D; and D; are both reduced alternating and equivalent,

then w( D; ) = w(D»).

Thus Theorem 2 says that reduced alternating diagrams that are equivalent have the same
writhe. Therefore if two reduced alternating diagrams have different writhes , then they
cannot be equivalent. We state this as follows.

Corollary 1. If diagrams D; and D, are both reduced alternating and w(D,) = w(D,),
then D, and D, are not equivalent.

Corollary 1 applies to the right and left trefoils. They are both reduced alternating but
their writhes are different. Thus the right and left trefoils are not equivalent.

Theorem 1 also implies that if a reduced alternating diagram is equivalent to its mirror
image , then its writhe must be zero.

Corollary 2. If D is a reduced alternating diagram that is equivalent to D™, then
w(D) = 0.

Proof. Let D; =D and let D, =D™. Since D is reduced alternating, D™ is also reduced
alternating since in forming the mirror image we only switch crossings but we do not add
any “curls”. Thus we can apply Theorem 1 to obtain

(1) w(D)=w(D").

However, Theorem 1 states that

2) w(D")=-w(D).



From (1) and (2), we obtain w(D) = — w(D), hence 2 w(D) = 0. Therefore dividing by 2
implies w(D) = 0, as required.

Note that an example of Corollary 2 is the figure-eight knot 4, which is equivalent to its
mirror image and does have writhe 0. On the other hand, we note that there are reduced
alternating diagrams that do have writhe zero but they are not equivalent to their mirror
images. The first example that occurs in the Knot Table is knot 8;. One can check that
w(84) =0 but it can be proved that 841s not equivalent to its mirror image.

The contrapositive of Corollary 2 states that if a reduced alternating diagram D has non-
zero writhe, then D cannot be equivalent to its mirror image. We state this result as
Corollary 3.

Corollary 3. If D is a reduced alternating diagram with w(D) # 0, then D cannot be
equivalent to D",

Corollary 3 gives us another proof that the right trefoil is not equivalent to its mirror
image the left trefoil since the right trefoil has non-zero writhe 3.

In fact, Corollary 3 implies that any reduced alternating diagram with an odd number of
crossings cannot be equivalent to its mirror image, which we state as Corollary 4.

Corollary 4. If D is a reduced alternating diagram with an odd number of crossings,
then D cannot be equivalent to D™,

Proof. In order for the sum w(DD) =0, the +1 values and the —1 values must cancel. Thus
there must be an equal number of right and left crossings. Let n be the number of right
crossings. Hence there are also n left crossings. Therefore the total number of crossings is
2n, which is always even. Thus the writhe cannot be zero for an odd number of crossings.
Hence D cannot be equivalent to D™.

Since the right trefoil has 3 crossings, Corollary 3 immediately implies that the right
trefoil cannot be equivalent to its mirror image. It is not necessary to even compute the
writhe since we now know it cannot be 0. Furthermore, one can check that the diagrams
in the Knot Table with 5 or 7 crossings are all reduced alternating; hence they cannot be
equivalent to their mirror images.

Given a reduced alternating diagram with an even number of crossings, the first thing to
do is compute the writhe in order to decide if its possible that the diagram is equivalent to
its mirror image. If the writhe is not zero, then Corollary 3 implies the diagram cannot be
equivalent to its mirror image. This is the case for 6, and 6,, whose writhes are not zero,
as seen in the exercises. If the writhe is zero, then it is possible that the diagram is
equivalent to its mirror image. This is the case for the figure-eight knot 4,. It is also true
for knot 6;. One can check that w(65) = 0 and in Part 5 we will show that 63 is equivalent
to 65™. On the other hand, we mentioned above that knot 84 has zero writhe but is not



cquivalent to its mirror image. Thus zero writhe is necessary but not sufficient for a

diagram to be equivalent to its mirror image.

We will now state two very fundamental results for the reduced alternating case. Firstly,
reduced alternating equivalent diagrams have the same number of crossings. Secondly,
for a knot with a reduced alternating diagram, the number of crossings is the crossing
number. These results were first conjectured in the late 1800’s and finally proved by
Louis Kauffman, Kunio Murasugi, and Morwen Thistlewaite in 1986. The proof required
the Jones polynomial proved by Vaughn Jones in 1985. For a discusssion of the Jones
polynomial, see The Knot Book by Colin Adams, Freeman Press.

Theorem 3. If D'l and D; are reduced alternating diagrams and equivalent, then they
have the sarhe number of crossings. If a knot K has a reduced alternating diagram

with N crossings , then ¢(K) = N.

Note that all the knots in the Knot Table through seven crossings have reduced
alternating diagrams. Therefore Theorem 3 implies ¢(Nj) = N, as was stated in Part Three.

Projection

If we place a knot in front of a white screen and shine a light directly on the knot, we will
obtain the knot shadow on the screen. For example , the shadow of a trefoil knot is shown
on the right in Figure 11. Note that the shadow is simply a two-dimensional curvo as
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9.2 The Dowker Notation for Knots

The Dowker notation is an extremely simple way to describe a projection

of a knot. First, let’s start with an alternating knot. Suppose we have a pro-

jection of an alternating knot that we want to describe, like the one in Fig-

ure 2.3. Choose an orientation on the knot, given by placing coherently

directed arrows along the knot. Pick any crossing and label it 1. Leaving
that crossing along the understrand in the direction of the orientation, la-
bel the next crossing that you come to with a 2. Continue through that
crossing on the same strand of the knot, and label the next crossing with a

3. Continue to label the crossings with the integers in sequence until you
have gone all the way around the knot once. When you are done, each
crossing will have two labels on it, as the knot passes through each cross-
ing twice (Figure 2.4). Notice that, in fact, each crossing has one even
number and one odd number labeling it.

=)

Figure 2.3 An alternating knot.

Figure24 Label each crossing of the knot with two numbers.
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40 The Knot Book

Figure 2.12 A nonalternating knot with sequence 6 —14 16 —12 2 —4

-8 10.

Exercise 2.8 Draw a projection of the knot corresponding to the se-
quence 1412—-16218 6 8 10 —4.

Exercise 2.9 How do you recognize from the sequence of numbers that a
projection has a trivial crossing in it like this? How about recognizing
a Type II Reidemeister move that will reduce the number of crossings
by two? (See Figure 2.13.)

> @

a b
Figure2.13 (a) Trivial crossing. (b) Type II Reidemeister move.

Dowker’s notation allows us to feed projections of knots into the com-
puter simply as a sequence of numbers. In particular, suppose we wanted
to attempt a classification of 14-crossing knots. The number of sequences
of the 14 numbers 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 is 14!, which
is about 87 billion. Then we can put a +1 or —1 in front of each of the even
numbers, giving us another factor of 2'4. Of course, there aren’t this many
different knots with 14 crossings. Lots of the sequences represent the same
knot. In fact, lots of the sequences represent the same projection of the
same knot. ;

Morwen Thistlethwaite used the Dowker notation to list all of the
prime knots of 13 or fewer crossings. Perhaps it will turn out to be the best
way to list knots of 14 or fewer crossings.
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