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3.10 Apolication of the Golden Mean to non-geriodic tilinds of the olane

We will conclude this chapter by describing a strikingly complex and
beautiful way in which the two geometric forms based on the golden mean,
known as the kite and the dart and depictad in Figure 3.28 , can be used

to tile the plane non-periodicallv.
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A periodic tiling is one in which the entire configuration can be

translated (without rotation) to a new position which reproduces the orig-
inal tiling. We say then that the tiling is invariant under translation.
Escher has immortalized these tilings, as shown for example in Figure 3.29.
It was until recently thought that any set of fo;ms ﬁhat tile the plane
non-periodically can also tile the plane periodically. For example, the
polygonal forms called enneagons shown in Fiaure 3.30 tile the plane both
periodically and non-periodically. (4hy?)

It was therefore a great interest that met Robert Berger's discovery
in 1964 that there exists a non-periodic tiling of t@e Qlane for which there
i§ no periodic tilina. However, to carry out fhié‘ti%in; Berger needed
20,000 dominoes.

This enables us to better appreciate L.S. Penrose's discovery of two
pieces based on the golden mean called a kite and a dart shown in Figure 3.28
which also tile the pTaﬁe non-periodically but not periodically, if during
the tiling of the plane the blue curve drawn on the kite and the dart are
forced to meet only the blue curve of another kite or dart to form a con-
tinuous curve that winds through the tiling. The same holds for matching
the tiles so as to insure a continuous red curve wafting through the tiling.

Most noteworthy of these tilings is the approximate pentagonal sym-
metry, as shown in Figure 3.31 and 3.32. They are approximate in the sense
that they seem to always be striving to reproduce themselves but never quite
succeeding. Wherever we look, we see a configuration that looks familiar
in the sense that wewhave_seen something just 1ike it in one or another of
the tilings. We can make this statement even more precise by stating a

very remarkable theorem due to Conway. In more colloquial language the
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Figure 3.31 Some starting
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Penrose tilings
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theorem can be described as follows. Let's say that you are residing in a
finite region of diameter d, of a "Penrose tiling" (or universe). Let's
call this finite region your town. If you are suddenly transported to
another universe (a different tiling) how far must you wander to find an
exact replica of your town? Conway proved that ydu need not wander more .
than a distance of 2d from your new position, although the exact distance
is unpredictable! | |
Once again the golden mean has resulted in a set of tiles that fit
together (to fill the infinite plane) in a repetitious way (i.e., Conway's
Theorem) buﬁ non-monotonously (since no two tilings are alike cutside a
finitg region). Finally we illustrate the mysterious-pentagram of Pythagoras
once again in Figure 3.33 and ask you to locate the kite and dart hidden '
in this figure.
~ Construction 3.3: |
Construct.a pattern of at least fifty kites and darts. The following

discussion by Martin Gardner in Scientific American [ Jmay be helpful.

To appreciate thefui.l beauty and.

mystery of Penrose tiling one shouid
make at least 100 kites and 60 darts. The
pieces need be colored on one side only.
The areas of the two shapes are in the
goiden ratio. This proportion also ap-
plies to the number of pwmyogneed
of each type. You might think you need
miore of the smaller darts, but it is the
other way around. You need 1.618... as
many kites as darts. In an infimitetiling
this proportion is exact.

A good plan is to draw as many darts
and kites as you can on one sheet, with 2
ratio of about five kites to three darrs,
using a thin line for the curves. The
sheet can be photocopied many times.
The curves can then be colored with,
ny.mdandmfelt-&ppem.(.‘anyay

has found that it speeds coastructions ‘.
.and keeps patterns stabier if you make -

many copies of the three larger shapes in

the lower illustration on this page. As .

you expand a pattern you can continual-
ly replace darts and kites with aces and

-

bow ties. Actually an infinity of arbitrar-
ily large pairs of shapes. made up of
dartsandki&c.wiﬂmfortiling any
infinite pattern,

A Penrose pattern is made by starting
with darts and kites around one vertex
and then expanding radially. Each time
you add a piese to an edge you must,
choose berween a dart and a kite. Some-
times the choice is forced. sometimes it
is not. Sometimes either piece fits. but
later you may encounter a contradiction
(a spot where no piece can be legally
added) and be forced to go back and
make the other choice. It is a good plan
to go around a boundary. piacing all the
forced pieces first. They cannot lead to a
contradiction. Y ou can then experiinent
with unforced pieces. It is always possi-
bie to coatinue forever. The more you
play with the pieces, the more you will
become aware of “forcing rules” that
increase efficiency. For example, a dart
forces two kites in its concavity, creating
the ubiquitous ace.
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