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IX. Mirrors, Symmetry and Isometries

“Is looking alass milk good milk to drink?"

Through the Looking Glass

Lewis Carroll

1. Mirrors
Mirrors present us with a world of strange and interesting illusions.
Some animals never learn that mirror images are illusions and think, rather,
that they are seeing another individual. However dogs and cats are more
intelligent and lose interest with the mirror as soon as they realize that
they are seeing a mere image of themselves. On the other hand, chimpanzees
and young children find great fascination with thg fact that whereas the
images they see in the mirror are themselves. there are certain subtle dif-
ferénces. They can spénd hours exploring these differences. .We would Tike
. you to_gﬁ back in time and try to look again at mirrors with the curiosiﬁy
of a young child. We wiTT-suQQESt'sevefaI things to do; ﬁowévef; you may
add anything that you wish tﬁ this Tist. In-reSponse.to each of these mir-

ror experiments write a paragraph describing what you see.

1. Look in a mirror and wink your right eye. What does your image do?
2. Write out the words of the following poem by Tooking at them in a

mirror

esvot ydtile ads bas gillivd eswT
:adsw ot i sldmig bus s1yg bid

«2svogotod odt s1ow vemim [[A
-sds13tuo adist smonm odt baA

3.. Place the following objects in various orientations before a mirror:

82
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a ball, a cube, an egg, a clock, a helical spring, a conical object,

a knot, your right hand, at least three additional objects of your
choosing. What do you observe?

Your face appears to be symmetric. Let's see just how symmetric it is.
Piace a mirror along the line of symmetry that divides the Iéft side
of a photograph of a human face from the right and see whether the
exposed portion of the face and its mirror image combine to give a
realistic or distorted picture of the entire face.

Look at a painting in a mirror. Does anything look strange about the
painting or is it the mirror image of an equally valid painting?

Take a pair of mirrors as shown in Figure

1 and look at your face in the mirrors.

Wink your left eye. What does your image
~ do? How does your left hand look? Rotate

“the mirrors 900{ What do you see? '_ ; Figuré 1
Take a curved metal sheet and look at your
reflected image in the sheet. What do you f —_
see? Change the orientation of the sheet.

_ _ _—

what do you see? Try looking at objects in
mirrors with different curvatures and record your observations.

The following sum is wrong.

3

340
TH8I3
3374813
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Look at the sum in a mirror and show that it is now correct.

Look at these names in a mirror.

T

= 2

o
L3
E

O

ABECDEFGHIJKLMNOP
QRSTUVWXYZ

PoOmomD

Z
W
4
‘35!-
E
3
=
5
=
%

Why is TIMOTHY not reversed?
10. Which of the letters of the alphabet will Tdok_the same when seen in

a mirror? Which will not Took the same no matter how you orient them?
11: Why does an ordinary mirror appear to reverse right and Teft but not

up'dnd down?
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There is one kind of symmetry that occurs most frequently in the ani-
mal world. A1l animals have a plane of approximate symmetry that divides
the left side of thejr body from the right side. This kind of symmetry is
known as bilateral symmetry. It is the most frequent form of symmetry
found in man-made objects and architecture as man attempts to impose his
own symmetry on his artifacts. As a matter of fact, we have had to coin
the words "left" and "right" to distinguish more easily between these two
similar looking halves of our_body. If there were some obvious asymmetry
in the two halves of our body we could refer to that side without the use
of words like "left" or "right." For example we could refer to the side
of our body with the ear (if we had only one) or-the.horn,'etc. Actually,
our bodies are not perfectly symmetric as you may have discovered if you
carried out the suggested exercise 6 of the last section in which a face is
reconstructed from one half of 1ts mirror image. |

The apparent bilateral symmetry comes about due to the steady action
upon our bodies of the fb%ce of grévity which distinguiéhes between up and
down but not between left and right. The front and back protions of ani-
mals have probably evolved asymmetrically due to requirements of locomo-
tion and finding food.

When we look in a mirror and wink our right eye, we see our image
wink his left eye so we say that mirrors reverse left and right. Ac-
tually, the mirror does not reverse left and right since it is really the
eye on the right side of the mirror that winks when we wink our right eye.
In fact it is front and back which the mirror reverses. We imagine that
we can walk behind the mirror wherein the person in the mirrors appears to

have his left-right orientation reversed. Likewise an asymmetric object
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such as a left glove becomes a right glove in the mirror in the sense that
if the left glove were carried around to the other side of the mirror it
would not match up with its image, whereas a right glove would match. Is
there any way that a left glove can be turned into a right glove so as to
match up with its mirror image? Strangely enough the answer is yes; how-
ever, the explanation is worthy of a science fiction story rather than a
mathematics book.

In order to explain how left gloves can be turned into right gloves,
let us consider a similar situation that arises when a Flatlander is viewed
in a Flatland mirror (which is a line in the-pléne). Since Flatlanders are
asymmetric in their world‘(like left gloves in 3-D worlds), they too cannot
be made to match up with their mirror images by mpving them behind the mir-
ror in the plane of their pr-dimensiona] world. However, if we 1ift the
Flatlander up infb three dimensions and furn him around and put him batk in
Flatland he can now easily be'éeen to match up with his mirror image. The
same can be done with a ieft glove. However, it must be lifted out of our

three-dimensional world, turned around in the world of four dimensions and

then put back in 3-D in which case, being now a right glove, it can be made
to match the left glove's mirror image. Likewise a human being who is trans-
ported into 4-D space and then returns to 3-D space may return with all his
- left-hand features reversed. For example, his heart might now be on the
right side of his body and any distinguishing features such as birthmarks
or the part in his hair would also be reversed.

Physicists are particularly fond of symmetfy. Recently it was dis-
covered that for every elementary particle there exists a mirror imagg

particle. For example, corresponding to an electron there exists a positron
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with the same size but opposite charge. Corresponding to protons there are
antiprotons and for neutrons there are antineutrons. It has even been con-
jectured that there are mirror images of all forms of matter, known as anti-
matter. It is also thought that when these two mirror image forms of
matter combine they disintegrate with a large explosion which appears to
answer the question which Alice poses at the beginning of this chapter as

to whether looking glass milk is good to drink.
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3. The Geometric Theory of Mirrors and its Relation to Isometries

We have discussed how symmetry and asymmetry of 1-D, 2-D, and 3-D
figures is related to mirrors. Let us now investigate the mathematics
behind the transformations of pdints due to reflections in a mirror.- We
will 1imit ourselves to points in the plane for which a mirror consi;ts of
a line in the plane. We will describe the transformations that result from
points reflected first in a single mirror, then in two mirrors either meet-
ing at an angle or paraTTei to each other, and finally in three mirrors.

It will turn out that we need not consider more than three mirrors to get

a complete understanding of the possible transformations of points dqg to
reflection in mirrors. | - T

In the remainder of this section we will study mirror transformations
by geometric methods and discover the laws that Qoyern the transformations
mentioned in the previous paragraph. fﬁ the next section we déve]qp the
mathematics necesSary'for a computer to carry out théSeltranéfbrmations.

A. Reflections in a single mirror:

Consider a mirror M and a point P located a distance d from M as shown
in Figure 3. The transformed point

P' is located distance d on the other

B

side of the mirror.

\
P Eigqure.3. ...,
Rule 1: A mirror M is always the perpendicular bisector of the line be-

tween a point and its reflected image.
If we use the letter R to stand for a reflection in mirror M, then RR

stands for a reflection followed-by a reflection. Since a reflection fol-

-
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lowed by a reflection leaves all points P in the plane unchanged we can
write:

RR=1
or R=RL
where the reader is referred to section I for definitions of the identity
transformation I and the inverse r™L,

B. Reflections in two mirrors:

(a) Intersecting mirrors

Consider mirrors M; and M, intersecting with ahgle g at 0, and consider M2

EJ’

an arbitrary point P in the plane.

Reflect P first in M; to P',
then in Mz to P'' as shown in
Figure 4a.

Can you prove from ?igure 4a

~ thiat angle —POP''=28? (Do this!) ' | Figure 4a
Let us now reflect P first in M, then M, as illustrated in Figure 4b. M

Can you prove from Figure 4b

that angle POP'‘'=-28? (Do this!)

“Fiqure 4b

b

" We can therefore state the following rule: ‘\\t ]?"

Rule 2: If any point in the plane is reflected successively in two #nter-

secting mirrors, the transformed point is rotated about the point



of intersection by twice the-angle between the mirrors and with
the same sense of the angle between the first and second mirror
of the reflections.
If we use P1 and P, to stand for reflections in mirrors M1 and MZ
respectively, and S for a rotation about the intersection 0 of the two
mirrors of twice the angle between M1 and Mz, we can make the concise al-

gebraic statement:
S = RoRy

which states that S is the same as R1 followed by Rz.

Likewise: -1
o §$* = RIRZ

since S~! is a rotation with the opposite sense of S (why?) and results
from Ry followed by Ry-

Remark 1: '

Wi thout proof, we state that any two mirrors intersecting with angle @ at

284.

point 0 will have the same effect upon an arbitrary point of the plane re-"

gardless of the orientation of the mirrors. Thus, the pair of mirrors

_ /
M;' and M,' of Figure 5 will have n:. ‘\”. P
the same effect on point P as M, 7&

and M,, namely, they will transform ) "’ﬂrﬂxr,,——'
’

P o' P

Problem: .Prove this!

/

l Figure 5

(b) Two parallel mirrors
Again, consider an arbitrary point, P, in the plane and two parallel
mirrors M1 and M, a distance 2 apart. Reflect P first:in M, and then in

Mz as shown in Figure 6.
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Can you prove that P'' is translated

- p B’ ?
from P a distance 2% in a direction ; — e — L= ——x
from Ml to M‘Z' perpendicular to the ‘-— — 24 P"

mirrors? (Prove this!) Likewise, if

the reﬂect‘iqns take place first in Mz

and then in M1 the point P is translated Figure 6

by 2% in the other direction. Thus we can state:

Rule 3: Two parallel mirrors translate a point to its image point by an
amount twice the distance between the mirrors in a direction from

the first mirror to the second mirror of the reflections.

If we use the letter R, and R, for reflections in M; and My and T for
the translation of an arbitrary point through a distance equal to twice the
distance between the parallel mirrors, then we summarize rule 3 algebraicai1y:

T= RZRI

Also, R

Tl R4R, (why?)

Remark 2:

If two parallel mirrors a distance % acart were nlaced anywhere without ro-

tating them, their effect on P would be the same, namely, P would be trans-

lated a distance 22 in the direction from HI to Mz. Thus the two mirrors

y /

Ml' and M,' of Fiaure 7 have the M, MZ M, I '\42.
same effect on P as M, and M,. i
s Bl elele. i 2 ""'_Q — = f —.1
(Check this!) ¢
et -1 — x %
p) " . K

E E E

Fiaure 7

Remark 3:

If P is reflected in parallel mirrors Ml th_en MZ’ P is translated a distance
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twice the distance between the mirrors. If this reflected'image is then re-
flected first in Ml then in Mz it too is translated by the same amount.
This sets up an infinite chain of.refTections, reflections of reflections,

etc., familiar to anyone who has fisited a barber shop. See Figure 8.
M, Moy

—p— 24— - 22— |—e— 24 —

P*Z -E-'l -?o :f?; .-pz
Figure 8 -

(a>

C. Reflections in three mirrors:

First, let's consider the different ways three mirrors can be oriented
relative -to each other. There are five distinct ways, and they are shown

in Figure 9.

- -

(b) €O d) (e
Figure 9
The mirrors can all intersect at a point, they can all be parallel,
two can be parallel and the third perpendicular to them, two can be parallel

and the third cuts them obliquely, and finally they can all intersect each

-
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other but not all at the same point.

(a) At first it might seek 1ike a lot of work to analyze each of these

five cases. However, the first two cases have already peen analyzed by
Rules 1, 2 and 3. The fact that we now have three mirrors presents no
problems.

- Problem:
(1) Find the transformed position of point P if it is reflected in mirrors

Ml’ MZ, and M3 of Figure 10 in that order.

My My
4L
-
= \313 . Hl
\x _E
Figure 10 '

(2) Find the transformed position of point P if it is reflected in mirrors

. Ml,_HZ,-andlﬁa of Figure 11 in that order. 5 _

Ca M, ' HZ ' ' NS

?ﬂ
X (= ] Gy Z >

e

Figure 11
(b) Let us consider the third case. A point P is reflected first in

the parallel mirrors Ml and Mz a distance & apart, and then in the mirror

M3 perpendicular to Ml and Hz as shown in Figure 12.

M. ™,
£y e
d 3 - M3
L Iy . W

Figure 12



288.

Thus P is translated a distance 2% to P' and then reflected in My to
P''. This combination of a translation and a reflection in a mirror placed

along the direction of the translation is called a glide reflection. Mirror

M3 is called the axis of the glide reflection. If a point P is glide re-

flected to P1 and P1 is glide reflected again through Mis My, and M3 to Pz
and P2 is again glide reflected, ad infinitum, a pattern of glide reflections

as shown in Figure 13 emerges.

5 g (2 ™ 2,
x % *
73
— . - 2 x
23 ‘ P, -
Figure 13

These are like youf footsteps if you are Qaiking in the direction of

(c) Now we are in a position to consider the fourth case. We will
show how this case reduces to case 3. The simultaneous reflections in Ml’
Mz, then M3 can be thought of as first a reflection of P in Ml to P' and
then a rotation about point 0 of Figure 14 of an amount twice the angle 6

from Mz to M3 to P'', q.e., R3R2R1 = (R3R2)R1==529R1

/
M2 i ! ™
' ) M3 , M, :
/ M3
My
e \&) -
=)
P
?
(&) (b)

Figure 14
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But since the rotation about determined by M, and M, does not depend on
the orientation of M', and M', (see Remark 1), the mirrors in Figure 15b
have the same effect on P as the mirrors in Figure 15a.

Now the simultaneous reflections through Ml, M'z, and H'3 of Figure
15b can be thought of as a rotation of 180° about the intersection of Ml
and M'z followed by a reflection in M'5, i.e., R3R2R1 = R3(R2R1) = R351800’
But by Remark 1 M1 and Mz can also be rotated until M"2 is perpendicular
to M'3 as shown in Figure 15¢c. This reduces case 4 to case 3, where M"z
is the axis of the glide reflection. x
Problem:

Show that case 5 also reduces to casé 3. For the mirrors oriented as

in Figure 16 find the axis of the M
M 4

glide reflection.

/ N .

D. A major theorem about isometries:

We have described how reflections in one, two, or three mirrors give
rise to all the isometries of the plane, namely, reflections, rotations,
translations, and glide reflections. MNow we summarize all of the résu1ts
of this section by an interesting theorem.

Theorem:

Any isometry of the plane can be carried out by a series of no more
than three reflections.

In other words any two figures which are congruent under an isometry

can be made to coincide by no more than three reflections.
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It will be sufficient to match up the two congruent triangles shown in
Figure 17. The procedure is as follows:
1. Choose two corresponding vertices, for ekamp1e A and A' and find the
perpendicular bisector M; of AA'

2. Reflect AABC in a mirror at M, to AA'B''C'' as shown in Figure 17 .

1
3. Reflect AA'B''C'' in the perpendicular bisector M, of two other corres-
ponding vertices, say, B' and B'', to AA'C"B' .

4. Reflect AA'B' C''' to AA'B'C' in a mirror placed on A'B' as shown

in Figure 17

o
ny

/ hr
*: 2
C E:\'\:‘\\
M, : i “:te;l
: : ’
.___-.-—-‘"""-.—-——- /
B A M3

Figure 17
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4, The Analytic Theory of Isometries

In this section we will demonstrate how the isometries discussed in
the previous section can be carried out analytically. The methods that we
come up with are programmable for a computer graphics facility. We will
assume that the student knows how to multiply matrices, and we will not
attemot to justify every mathematical statement although we will try to
make the subject seem plausible. We will also restrict ourselves to iso-
metries of the plane.

A. Representation of isometries by matrices:

As we'saw in Chapter I isometries are members of a class of trans-
formations known as linear transformations that can be represented by ma-
trices in thg sense that if a point P and its transformed poin; P', as shown
1ani§ure 18, are represented by column vectors, P = ( ; ) and ?' = (‘;: |-
then o

P! = AP where A is the 2x2 matrix A = (%3

In other words:
X'y _sabyx
(yl)- (cd)(y)
or, written out,

x' = ax + by

l = d /_ X
y cx+yAY P’ 's')
b 1
A.
2= (%)
.
*

Figure 18



Example:
o701
If A=(]7) _
find out how Mr. Flatlands, shown in Figure 19, whose vertices are (g), (

({), (E) transforms.

But, A= -(H
A(g) = (D)
A =(T])
A(@=(§)

Also, these matrix transformations have the property that lines are
transformed into lines. Thus the result of the transformation is shown in

Figure 19.

Figure 19
Thus we see that (? 'é) is the matrix of a counterclockwise rotation
about the origin.
Problems:

What transformations are represented by the following matrices?
10 20 11 .707 -.707 10
(9102 Ca2)» (g 1) s (g7 i707) » (o)

Show what these matrices do to Mr. Flatlands.

231,

1
)
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B. How to construct a matrix to carry out a desired rotation or reflection:

We first note the way in which a matrix transforms the special points
1 0,.
(g) and (;):
ab, 1 a
(2 a5l =2

aby0y_ (b
EEACIERL
We notice that ([1]) transforms to the first column of the matrix, while

(ql) transforms to the second column.

Conversely, we can show that if (é) S 2) and,

(9 — (D
that ( 2) and (g) must be the first and second columns of the transformation
. matrix respectively.
Example 1:

If the transformation rotates all points in the p'lane' 90° clockwise,

‘then, as shown in Figure 20, ( i_\

l \

(5)

Figure 20
(3)— (D
(D) —(g)
Therefore, the transformation matrix is:

A= (g)
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Example 2:
If the transformation rotates all points counterclockwise through 8

degrees. Then, as shown in Figure 21,

(—Sa-ne):- [{?)
Cove M; (Co:a)
'\ | ’1* Sin 2
B A
(o)
Figqure 21
(g) = (e
(1) —= (5080

Thus,

= ( €0s@ -sing
A=l sin®@  cos® Je

What is A for.e =90°, 180°, 45°7
Problems: ‘
Find the matrices that carry out the followina transformations: on a

typica] point.

1. Reflect in a mirror placed at anale 45° clockwise from the x-axis.

2. Rotate counterclockwise by 90° and then reflect in a mirror nlaced on the x-axis.
3. Reflect first in the x-axis and then in the y-axis.

4, Reflect first in the y-axis and then in the x-axis.

5. In problems 2-5 comoute the matrix of each component of the compound trans-
formation and show that the nroduct of the component matrices equals the matrix

of the comnonent transformation.
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What points are represented by ( 1) . ( 1) vl B )?
3 1 2/3;

294,

C. Representations of translations by matrices:

We have seen how to express rotations about the origin and reflections
in mirrors through the origin by matrices. Is there a way to express a
translation by a matrix? If we try to ccmstract '.'a 2x2 matrix to do trans-
fations we will not succeed. Howawet, if we change the way we represent

points in the plane we will be able to use 3x 3 matrices to represent

translations.
" sex\
Let us represent the point (y) by the triple of numbers F\cy ,
¢ o

where ¢ can be any number greater than zero Tpus,

(1 (5)- ()

You ml‘l notice that a point P now has many representatwns For example:

3 6
(2);( ). Also (4)
1 2f

(CER!
"
—
nNw
=
=
-t
p—
m
N
P -
‘—-—/
"
_——
2N

Now consider Mr. Flatlands again with vertices (g). (é), ( i), (_:i)-

0 1 1 '\
He is represented in the new systemby (0|, {0 )\, [ 1], -‘.1).
1 1 1 1

How does the following matrix, A, transform this friangle?

102
A=[013
001

Indicate your result in Figure 22.

Fiagure 22
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' 100
the transformation, {010

2085,

Now you can see how any translation in the plane can be carried out
via a 3x3 matrix.
Problem: !

Write the matrix to translate any point one unit to the right and two
units down. Test your matrix on the triangle on Mr. Flatlands.

Now again consider Mr. Flatlands and transform him by matrix,

100
010
00%

Indicate ydur result in Figure 23.

I f Fiqure 23

 Based on-thi; result,what'conjecture can you make about the nature of

00c¢

0D-10
What does the transformation (1 00 \ do to Mr. Flatlands?
_ \0 01/
0 -12\
What about ({1 0 3) ?
0 01

Summarizing these results, we have seen that given the matrix

abe
cdf,
00g

first performs a rotation or reflection in the plane specified by the sub-
matrix ( 2 Z ), then translates to the right or the left or up or down by
amounts given by e and f, and finally expands or contracts by an amount de-

termined by é—.
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D. Rotations around a point other than the origin:

Let's say we wish to rotate any point P by 90° about a center C of

rotation located at (2,1) to the new location P' as shown in Figure 24.

P’y
\
-

c(2:1)

d’ - ' ) . Figure 24
You may remember that the matrix !S0 = (? 'é) rotates points about the
origin 8. Although we can't use this n;atrix to rotate Pc about C we can
translate C and P, without changing their orientation, so that C is at the
or"ig'in perform the rotation about and then translate the resulting
points and P back to C and P‘ again without changing their omenta__twn
These three steps are shown in \ 2 ’
- Figure 25. - In this figure T re- -e';' S'@ /?'\

presents the translation back to ' \ / \Q'J
. . &

the origin; S, the rotation; and \-‘

T‘l, the translation back to C.

Figure 25 "

Thus the rotation about C is represented by:

-1
s =T ls.T

c e 10-2\/0-10%102

= 01-1 100 {o11

001 001 001

What is Sc for a rotation of 180°% about C(1,-1) of the point P(2,-2).

Problem:

Show the result graphically.
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E. A final mystery transformation:

So far we have found a purpose for every element of our 3x3 matrix
except the first two elements of the last row. Let us now see what effect
these elements have on points in the plane.

Consider two parallel line segments (railroad tracks) whose end points

are Ly : (é ) | %) and L, (g Yy (% ) shown in Figure 26.

Plot the transformed 1ines under A_ (' l ‘)
/1 00
0 10}
0 %1
Are the transformed lines still parallel? (1\ (1-) T
0 o
Can you find an interpretation for this - Figure 26

mystery transformation? .Where do the ooints (1,M) and (2,M) transform to

as M - . Can you find an interpretation for this'resuit?

F. Projectiohsf

When we observe an object such as a desk or the window or ceiling of
the classroom we always see a distorted image of the object. For example,
lines of the object that are parallel are seen to be either parallel, con-
verging, or diverging depending on where the object is in relation to our
eye. In fact we are all familiar with railroad tracks which appear to con-
verge to a point in the distance: We say that we are viewing the objects or
the railroad tracks "in perspective.”

Perspective works very simply. Every time we view a scene from the
world we are actually looking at an image of the scene projected by our

eye (assume one eye is closed for simplicity) onto a screen situated in

front of us, perpendicular to the around. (See Fiaure 27.) Lines of the
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object parallel to our line of sight behind /

the screen seem to come together in the

: = | 2

distance 1ike railroad tracks, whereas lines é’ P
N

of the object parallel to our line of sight /<

R

in front of the screen appear to diverge. r

In appendix A we describe in greater detail

 how we view objects in perspective. Figure 27

We can show that the mystery matrix of the previous section projects
points from a plane into itself. It is difficult to get a physical under-

standing of this transformation. However, if we consider the three-di }nen-
(’1 0 00
sional analog of the mystery matrix, namely, ! 8 é 0 g)

00--[‘-0

we can get a better understanding of the nature of projective transforma-

tions. However we must first introduce a new way of denoting points in 3-D

space, ana‘lc:gods to the extended way of wr-it'i_ng points in 2-D, namely,

(3, (& WIS

\ yj = cz . Thus the point(ﬂ) =[ 1 )orf 2 etc.
If we imagine that the eye is located at (0,0,k) on the z-axis of an

X,Y,z-Cartesian coordinate system, the 4 x 4 matrix transforms points of a

solid object in 3-D space onto the x,y-plane, as shown in Figure 28 in

X ’
such a way that each point, P 47 / ' -?2.

of the object is projected ‘//,/"

along the line of sight from / '?z. ..E, ,@‘o
the eye until it pierces the ) ° e —— .
—
X,y-plane at P’ A /._
—
K e / El(x) s z)
B Figure 28



To prove that this transformation projects points, consider a

point with coordinates (x,y,z).

1

o O o

but

thus,

1 § k 1
X' = g
For example the point

transformed to P

0 0
10
0

0
0
0

with coordinates (x',0,0). But from figure 28, triangle

1]

Py with coordinates (X,0,¥) in figure 28 is

A QB Pi is similar to A A B P]

thus,

K
k-z

or

b

=

= A
X

=

which justifies the x' tranformation equation.

(why?)

proven in a similar manner.

'(why?)

The y' equation can be

-
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Problem:

(a) Determine and graph the transformed points of the unit cube at
the origin of the coordinate system lying in front of the viewing screen
(x,y-plane), with vertices: (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1),
(0,1,1), (1,1,1), and (0,0,0). Let k =2

(b) Do the same for the unit cube placed 5 units behind the
viewing screen with vertices: (0,0,-6), (+1,0,-6), (0,1,-6), (1,1,-6)
(0,0,-5), (1,0,-5), (0,1,-5), (1,1,-5). Also let k = 2 in the projection

matrix.



