Module 8: Tiling a Rectangle by Congruent and Non-congruent Squares
1. Introduction

We first tile a rectangle by congruent squares and then develop a more complex method
to tile a rectangle by non-congruent squares.

2. Tiling a rectangle with congruent squares:

A rectangle with sides in proportion 3:2 is shown in Fig. 1. Clearly, the fewest number of
congruent squares that are needed to tile it is six squares of side 1 unit. On the other hand
the fewest number of congruent squares needed to tile a 15:9 rectangle is fifteen squares
measuring 3 units on a side (see Fig. 2).

We now ask the following question: For a rectangle of proportion b:a, what are the
fewest congruent squares needed to tile the square and what is the side of the square?

The answer is that the side of the smallest triangle is the greatest common divisor of a
and b, i.e., gcd(a,b). By definition, the greatest common divisor of integers a and b,
ged(a,b), is the largest integer that divides evenly into both a and b. The number of
squares required to tile the square is then,

a b

N= X ; (1)
ged(a,b) ged(a,b)

Clearly, for 3 and 2, ged(3,2) = 1 whereas ged(15,9) = 3 so that 3 and 2 are relatively
prime but 15 and 9 is not.

Remark: In Module 4 we found that ged(n,k) =1 , i.e., n and k should be relatively
prime was the condition that guarantees that a star polygon can be drawn in a single
stroke without taking the pencil off of the paper. Two integers are said to be relatively
prime if the ged is 1.

Another quantity that is important to the theory of number is the least common multiple
of a and b, i.e., lem(a,b) where Icm (a,b) is the smallest integer which can be divided
evenly by both a and b. It can be shown that

axb =lIlcm(a,b)x gcd(a,b). 2)

From Eq. 1 and 2 it is easy to show that the minimum number of tiles N can be elegantly
expressed by the following formula, :

_lem(a,b)

gcd(a,b) )



For example, lcm(3,2) = 6 and lem(15,9) =45. Since ged(3,2) = 1 and ged(15,9) =3 we
see from Eq. 1 that N = 6 for the 3:2 rectangle and N = 15 for the 15:9 rectangle.

What if you have a pair of large numbers such as the 60x27 rectangle shown in Fig. 3.
How do you find the ged? You can find the ged by extracting squares. First you can
extract two 27x27 squares with 6 units left over. Next extract four 6x6 squares, and
finally two 3x3 squares can be extracted. The length of the side of the smallest square is
the gcd{60,27}. This procedure is equivalent to what is called the Euclidean algorithm
in the subject of Discrete Mathematics. If the side of the smallest square is 1 unit, then a
and b are relatively prime.

Problem: Use this method of extraction to find the gcd of the following rectangles: a)
240:72 b) 55:34 Find the least number of congruent squares needed to tile the
rectangles.

3. Tiling a Rectangle with Non-congruent squares

It was quite easy but uninteresting to tile a rectangle by congruent squares when the
sides were integers. It is more interesting to now consider the tiling of a rectangle by a
finite set of squares no two of which have the same edge length, i.e., non-congruent
squares.

Since the set of squares is finite, there is a smallest square. The first problem we must
confront in our tiling is where to place this smallest square. Can you see why it would be
impossible to place the smallest square in a corner or along one of the edges of the
rectangle as shown in Fig. 4a and b? The only other possibility is to place it within the
interior of the rectangle as shown in Fig. 4c.

Next we must decide how to surround the smallest square with other squares. Fig. 4d
shows how this square must be surrounded. (why?)

Now that we have decided what to do with the smallest square we can show how the
rest of the tiling may be determined. Consider a rectangle cut into smaller rectangles in
such a way that there is a chance of distorting all the small rectangles into squares. In
doing this we must be sure that at least one rectangle (the one we distort into the smallest
square) is surrounded by four rectangles as in Fig. 4d. One candidate with nine
rectangles is shown in Fig 5. Either D or H could become the smallest square in this
tiling. Let us choose H to be the smallest square and assign it an edge length of y units
while assigning X units to square E. Fig. 6 shows a step by step assignment of side
lengths to all of the other squares of the tiling in terms of x and y.

We now have an array of rectangles whose interiors have been labeled in terms of x
and y so as to indicate the lengths of the sides of the squares when the rectangles are
distorted to become squares. Since the left and right sides, and top and bottom of the
rectangle must be equal this leads to two equations :

x = Lly) (x4 T =02% Hy)+ e+ 2dy)++y) (4a)



(x+1ly)+(2x+y)=(x+7y) + (x + 3y) + (x +2y) (4b)

Solving Eq 4a for x and y yields x = 7y, while solving Eq.4b yields an identity.
Therefore we may choose a value for y to determine the dimensions of all squares in this
arrangement. If y = 1, then x = 7 and the sides of the other squares can be determined to
be: A=18,B=15,C=14,D=4,E=7,F=8,G=10,H=1,and =9 We have
therefore determined the solution now drawn to scale in Fig.7.

This is a beautiful arrangement that was not achieved by guesswork. It is the result of
mathematical reasoning.

How can you determine new configurations without having to create detailed
breakdowns of the rectangle? This can be done by noticing that tilings can be turned into
graphs. We do this by assigning letters to different heights within the tiling. For
example in Fig. 7 there are six different heights labeled from a to f. Each of these heights
becomes a vertex in a graph. The edge of the graph then becomes the side length of the
square between two heights (vertices). In other words, there are as many vertices as
there are heights in the tiling and as many edges as there are squares in the tiling. The
graph corresponding to Fig. 7 is shown in Fig. 8. There is an electrical analogy here. If
the side lengths are thought of as voltages, then voltages can be assigned to each vertex
(in the circles) where edges in the graph are changes of voltage from one vertex to
another. In this way vertex a is has a voltage equal to the length of the left and right sides
of the rectangle, or 32. The voltage at level b is then 17 and level ¢ is 14, etc. while the
voltage at the bottom of the square is 0 or ground.

Fig. 9a shows another arrangement of distorted squares. Fig. 9b shows the algebraic
solution, and Fig 9c shows a scale model of the tiling of this rectangle by non-congruent
squares. The algebraic solution yields: y =5/2 x where we assign x =2 and y = 5. The
other square lengths follow from this.

Problem: Draw the graph for the tiling in Fig. 9c.

Fig. 10a and 10b and 11a and 11b are tilings by 13 non-congruent squares and their
corresponding graphs for two different tilings with the same set of squares.

Construction: Distort the configuration of 9 rectangles shown in Fig. 12 so that the
outer rectangle is tiled by non-congruent squares. First decide which rectangle will be
transformed into the smallest square, then follow the procedure outlined above. After
determining the size of the squares, carry out the tiling with the care of an artist or
designer. Color your tilings using the fewest number of colors possible so that no two
squares sharing the same edge are the same color. Draw the graph corresponding to this
tiling. Can you rearrange the squares in your tiling so as to tile the outer rectangle in a
different way?

Remark: There are no solutions to the tiling of a rectangle by non-congruent squares
with fewer than 9 squares. There are two solutions with exactly 9 squares, six with 10



squares (four of which can be obtained by annexing a square to one side of a 9-square
solution); and 22 with 11 squares (12 of which are a direct result of 10-square solutions)

Try your hand at discovering a tiling not represented here. Be forewarned that many
diagrams will result in impossible results; both variables will be equal to 0, or one
variable or variable expression will be negative.

Problems: Three additional possibilities are given in Fig. 13. Find the edge lengths of
the squares in Fig. 13 a and b. Draw the graph for the tiling in Fig. 13c.
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Smallest square a) cannot be placed along an edge
b) cannot be placed in a corner
c) must be placed within the parallelogram
d) a possible configuration of non-congruent
squares surrounding the smallest square
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