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16.1 FINDING THE AREA BY USING SHEAR FORCE 
 
In Chapter 15, Part I we found the area under the graph of the V (x) function given the M (x) 
function.  Now we specify the V(x) directly and then find the signed area under its graph 
between x1 and x2.  To accomplish this we use V   to find M  and then apply the ideas from 
Chapter 15.  Since , 
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Applying the ideas from Chapter 15, 
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Let’s apply this to finding the area between x = 3 and x = 8 for the continuous beam from 
Section 8.4 with linearly increasing density,  x6 .  From Chapter 8.4 (repeated in Eq. 5 of 
Chapter 15.1, 
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Finding the antiderivative, 
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                                               =  (405 + c) – (640 + c) 
                                               = -235 
 
Remark 1:  Notice that the constant c cancelled.  This will always happen when evaluating 
integrals. 

Remark 2: This method of finding signed areas does not need a graph. 
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16.2  FIND THE AREA UNDER THE GRAPH OF y = f(x) 
 
In general , 
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where, 
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 from which it follows that , 
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where,    F(x) is any antiderivative of f(x). 
 
Remark 1:  Notice that the notation 2

1
|)( x
xxF  means take the value of F(x) at x = x1 and subtract 

it from the value of F(x) at x = x2, i.e.,   )()(|)( 12
2

1
xFxFxF x
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Example 1: 

Let f(x) = x2 .   If we wish to find the signed area between x = 0 and x = 1, i.e.,   dxx
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Remark 2:  The constant of integration does not enter into the calculation since it cancels. 
 
                          
Example 2: 

Now consider f(x) = 2

1
x

.  Find the area between x = 1 and x = 2 (a previous homework problem 

approximated by rectangles in Chapter 3).   An anti-derivative is,  
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from which it follows from Eq. 7 that, 
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Example 3: 
 
Find the signed area under the curve of   f(x) = x2 – 2x between x = 2 and x = 3. 
An antiderivative of f(x) is, 
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Example 4:   
 
Find the signed area of )1(444)( 2 xxxxxf   between x = 0 and x = 1. 
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This is the same result that we obtained in Example 2.4 of Chapter 15,  
 
Example 5: 
 
Find the signed area of  f(x) =  sin x between x= 0 and x = .  
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Therefore, 
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This was a result that we found for the solution of the Buffon’s Needle problem in Lab 
Exercises. 
 
Example 6: 
 

 Find the area under the graph of 
1

4)( 2 


x
xf  on the interval [0, 1].  
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We showed in Section 13.8 that  
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The graph of  21
4
x

y


  over the interval [0,1] was shown in Example 1 of Section 14.2.  The 

area under this curve over the interval [0,1] can be seen on this graph. 


