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18.1  INTRODUCTION  
 
Now that we are able to use the differential calculus to find the slope of a tangent line to the 
graph of a function, and we can use the integral calculus to compute the signed area under the 
graph of a function without having to add rectangles or trapezoids, we will be able to solve the 
beam problems by calculus.  
 
18.2  ADDITIONAL PROPERTIES OF THE INTERGAL 
 
      a) If you reverse the limits in an integral its sign changes, i.e., 
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      b)  If you consider the graph of the continuous function f(x) on the interval [a,b] and place 
another point c in the interval so that    bca  as in Fig. 1, then it is clear that, 
 
 
 
 
 
 
 

 
                         SA[a,b] = SA[a,c] + SA[c,b]                                                    
 
where SA means signed area, or            
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If F(x) is an anti-derivative of f(x) then Eq. 2b can be rewritten as, 
 

                                                     
b

a

cFbFaFcFdxxf ))()(())()(()(               (3) 

or,                                                 
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Now let us consider a discontinuous function shown in Fig. 2, 

Fig. 1
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Where, 
                                 f(x) =  g(x)  for cxa   
                                        =  h(x)  for  c < x b  
 
with antiderivative, 
 
                                 F(x) = G(x)   for  cxa   
                                             H(x)   for  c < x b  
 
 
  For this function, Eq. 2a continues to hold but Eq. 2b is now written, 
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and Eq. 3 becomes, 
 

                                         
b

a

cHbHaGcGdxxf ))()(())()(()(                          (5) 

                   
You will notice that I have used the notation c+ and c- in these formulas.  These are needed 
because the value of f(x) and F(x) jump at c.  The notation f(c-) means that we take the value of 
f(x) just to the left of x = c and f(c+) is the value just to the right of x = c.  To be exact,   
 
                                )(lim)( xfcf

cx 

     and    )(lim)( xfcf
cx 

   

 
 But remember that a constant can be added to the anti-derivative of a function to give another 
anti-derivative of the same function.  This means that we can always find a constant to add to G 
and H so that F(x) will be continuous.  When F(x) is continuous it follows that, 

ba c

g(x) h(x)

y=f(x)

Fig. 2
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                                     )()(   cHcG  ,   F(a) = G(a) ,  and   F(b) = H(b) 
 
so we have proven the following theorem: 
 
Theorem:  If F(x) is a continuous antiderivative of  the continuous or discontinuous function 
f(x), then, 
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b
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aFbFdxxf )()()(                                               (6)                   

In the next section we will show how this theorem is the key to using integrals to solve for the 
bending moment of a beam.   After all, when there is a concentrated load, the shear force is a  
 
 

discontinuous function.  Since   )()( xV
dx

xMd
 ,  M (x) is the anti-derivative of V (x).  We shall 

assume that M (x) is a continuous function so that it follows from Eq. 6 that,  
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18.3 SOLUTION OF THE BEAM PROBLEM USING INTEGRALS  
 
We have learned how to find the slope of the tangent line to the graph of any function by using 
derivatives, and how to find the signed area under the graph of any function using integrals.  We 
are now able to apply these ideas to finding the bending moments acting on a beam once we have 
determined the shear forces.   The shear forces are simply gotten by considering a balance of 
forces acting on a portion of the beam.  The bending moments can then be computed  by either 
Method 2, the AreaMethod, or by Method 3, the Slope Method.   

Example 1: 
 
We apply Method 2 and 3 to the beam problem with a linear force density x6 described in 
Section 8.4.  This problem was discussed again in Chapter 16.  The beam is shown again in Fig. 
3 
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Fig. 3

x6

 
     The shear force for this beam was determined to be, 
 
                                   23144 xV  ,     120  x    
 
a) Let us find the bending moment M  by Method 3, the Slope Method where the slope of the 
bending moment is the shear stress, i.e,  
 

                                    23144)( x
dx

xMd
  

Taking antiderivatives, 
 
                                          dxxM )3144( 2   

                                               cxx  3144  
 
Since the beam is free standing, M = 0 when x = 0.  Solving for c, 
 
                                             c 000   or c = 0. 
 
Therefore,      3144)( xxxM  ,   120  x  
 
b) Now let’s do this problem by Method 2, the Area Method where the signed area under the 
graph of V vs x equals the bending moment for a free standing beam.  Consider the portion of 
the beam on the interval [0,x].  The signed area under this portion of the graph of V vs x is, 

144 288
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But for a free standing beam,    0)0( M   resulting in, 

 
                                        3144)( xxxM   
 

Calculus can be applied to finding the bending moments of any beam however complex is its 
force distribution as we illustrate for the following two examples.  In what follows we choose to 
use Method 2, the Area Method which I now refer to as the Calculus Method. 

                 
Example 2. 
 
Consider the beam in Fig.4.  This problem was solved in Section 8.2. 

Fig. 10a

50 lb
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lb/ft10

The shear force was computed as, 
 
                            V  = 50 – 10x,   100  x  
 
To find the bending moment by the Calculus Method,: 
 

                              2
0

0
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0
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But since M (0) = 0,  
 
                               2550)( xxxM  ,   100  x  
 
This is same result that we obtained in Chapter 8. 
            
Example 3:  Consider the beam in Fig. 5 
 
 
 
 
 
 
 

 
 
The value of V (x) for the beam is easily shown to be, 
 
                 V (x) = 30,     0 < x < 5 
                         = -30     5 < x < 15 
                         = 30       15 < x < 20 
 
The beam divides naturally into three regions as shown in Fig. 2. 
 
           
                        0_________5_________________15_________20______ 
 
 
To compute M (x) we shall assume that the M (x) curve is continuous and use the equation: 
 
Choose x in the interval  [0,5), then ,  

                       xxdxdxxVMxM x
xx

30|3030)()0()( 0
0

  - 30(0) = 30x 

 
   or    M (x) = 30x + M (0).  But since M (0) = 0, 

 
                     M (x) = 30x   and    M (5) = 150 

 
For the interval [5,15]: 

Fig. 5
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Choose x in the interval (5,15)                   

                 
xx
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Therefore,   M (x) = 300-30x + M (0) = 300 – 30x   (since M (0)=0)   and   M (15) = -150 
 
Next, choose x in the interval (15,20] 
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Therefore,          M (x) = 30x -600   
 
As a check on the computation, M (20)=0, as it should be for a free standing beam 
 

 Summary:   M (x) = 30x ,              50  x  
                                                       = 300 – 30x,     155  x  
                                                       = -600 + 30x,   2015  x  
 
18.4 GENERAL PROCEDURE FOR FINDING THE BENDING MOMENT 
FOR A FREE STANDING BEAM BY THE AREA METHOD.  
 
To solve for the bending moment due to any loading of a free standing beam by the area method, 
follow this procedure: 
 

1. Divide the beam into N intervals  NNkk xxxxxx   1121 ......0  depending 
on its loading. 

2. Express the shear force V (x) in each distinct segment or interval, ],[ 1kk xx  of the beam 
using the balance of forces.     

3. Let x be an arbitrary point in the interval ],0[ 1x .  Evaluate, dxxVMxM
x

)()0()(
0
  

4. Since M (0)=0,  dxxVxM
x

)()(
0
  where 

x

dxxV
0

)(  is evaluated from the known value of 

V (x) in interval [0,x1]. 
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1. The value of  M (x2) is computed from step 3 by letting x = x2. 
 

2. Evaluate,  dxVdxVdxxVMxM
x

x

xx

k

k

 
00

)()0()(   where x is an arbitrary point in the 

k-th interval [xk, xk+1] . 

3.  
kx

kk xMMxMdxxV
0

)()0()()(   where 
x

xk

dxxV )(  is evaluated from the known value 

of V (x) in interval [xk,xk+1] and )( kxM is computed from the previous step. 
 

4. If the beam is free standing then M (0) = 0 and the result of step 7 is replaced in step 6 to 

give M (x) = M (xk) + 
x

xk

dxxV )(  for x on the interval [xk,xk+1]. . 

5. The value of  M (xk+1) is computed from step 5 by letting x = xk+1. 
 

6. Continue this procedure until xN is reached. 
 

7. Check to see that M (xN) = 0 
 
Remark 1:   This method does not need a diagram 
 
Remark 2: : We assume that M (x) is continuous so that the value of M at the end of an interval 
equals the value of M  at the beginning of the next interval. 
 
Problem: 
 
Use this calculus method to find M  solve the beam  problems 1 and  2 of Chapter 7 and problems 
1 and 2 of Chapter 8. 
 


