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3.1  FINDING THE AREA UNDER A CURVE 
 
We wish to find the area above the x-axis and beneath the graph of a function y = f(x) between x 
= a and x = b, where 0)( xf .   In the study of calculus the notation that is used for this area is:   


b

a

dxxfA )(  which is referred to as “the integral of f(x) between x = a  and x = b.”  The reason 

for this strange notation will soon become clear.    
 
  If we consider the linear function, 42)(  xxf between x = 0 and x = 2 as in Fig. 1, then the 
area under the graph of the y = -2x + 4 is  

the area of the triangle.  But what if the curve is not a line such as the graph of the function 
125.0)( 2  xxf  in Fig. 2a?  Again we seek the area under the graph of 125.0 2  xy  and 

above the x-axis between a = 1 and b = 5.  However, first we must consider what we mean by the 
“area under a curve.”  One way to define the area is to first draw the curve on a piece of graph 
paper as we have done in Fig. 2 and count the number of squares entirely within the region being 
considered (24 squares in this case), and then multiply the this number by the area of each square 
( 0.5x1=0.5  square units).  This will give an underestimate of the “area.” (12 square units).   If 
we do the same for the squares within the region and those squares pierced by the curve, we will 
get an overestimate of the “area” (32 squares = 16 square units [check this]). This is similar to 
what we did in Lab 4 of Lesson 0 for the area of a circle.  

y = -2x + 4



47Calculus and Structures                

Section 3.1

                                           
5

1

2 )125.0( dxxA  

Fig. 3

x

y

1 2 3 4 5

1
2
3

4
5
6
7

y0

y

y

y

y

1

2

3

4

y = 0.25x + 1
2

{ x = h

     As we refine the graph paper by taking smaller squares (we could cut each square into four 
equal squares), these approximations will give better and better estimates of the “area.”  If we 
keep doing this procedure indefinitely, and the estimate of the area approaches a limiting value, 
we define this limiting value as the area and, for the function 125.0 2  xy ,  give it the symbol,  

So we see that the computation of area is an infinite process.  As a result, we will have to be 
satisfied with finding only an approximation to the actual area.  Instead of adding squares, we 
will add a sequence of rectangles that approximate the area.  In Chapters 15 and 16 we will be 
able to compute the exact value of this area, and it will turn out to be A = 14.333…  But for the 
time being let’s see how well we can approximate this area. 

3.2  APPROXIMATING AN AREA BY RECTANGLES 
 
We illustrate the approximation of areas by rectangles for the graph of the function,  

125.0)( 2  xxf  over the interval [1,5], shown in Fig. 3.  We use the following step by step 
procedure. 
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                    Table 1 
                                        x        1      2      3         4      5 
                                   y=f(x)   1.25   2     3.25     5      7.25   

 

Example 1: 
 

a. Divide the interval from a to b into any number n of equal parts, x , of length  

n
abxh 

 .   For the curve in Fig. 2, where the interval from 1 to 5 is divided into 

four equal parts, h= 1
4

15



x  and the division points result in a sequence of five x 

values : x0 = 1, x1 = 2, x2 =3, x3 = 4, x4 = 5 spanning the interval from x = 1 to x = 5.  The 
y values at the division points form  the sequence:  y0 , y1 , y2, y3 , y4 shown in Fig. 3. 

 
b.  Make a table in which 125.0)( 2  xxfy is tabulated for the five x values as shown in 
Table 1.                        

c. Draw four rectangles using the y values corresponding to the x values at the left side of 
the four segments as the height of the rectangles and x =1 as the length of the base.  
Add up the areas of the four rectangles, and call this sum )4(

LA  , the left area  where,  
 
                          5.11)1)(5()1)(25.3()1(2)1)(25.1()4( LA   
             
            Notice that this sum is an underestimate of the actual area (why?). 
                                            . 

d. Repeat step c using the y values above the right side of the segments as the height of the 
rectangles.  This will give you another approximation to the area, the right area  
approximation with four rectangles, )4(

RA .  Again, the length of the base of each rectangle 
is x =1 while the heights are the last four values of f(x) in Table 1, 

 
                    5.17)1)(25.7()1)(5()1)(25.3()1)(2()4( RA  
 
      Notice that this sum is an over-estimate of the actual area (why?).       
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e. Take the average of the “left” and “right” areas:   
 

                              5.14
4

5.175.11
2

)4()4(
)4( 





 RL AAT  

 
           The symbol T is used here because this average gives the sum of four trapezoids, the areas  
            of the four trapezoids gotten by connecting the division points on the 
            curve by straight lines as in Fig. 4.  Also notice that this value is a much better 
            approximation to the actual area (A = 15.333…).  The following formula will give you
            the sum of the trapezoids areas directly: 
 

                              )222(
2 43210

)4( yyyyyhT   

                                     5.14)25.7)5(2)25.3(2)2(225.1(
2
1

  

where  yk = f(xk) and h = x . 
 
f.  Approximate the area under the curve by dividing the interval from 1 to 5 in two parts 

where the length of each segment is now h= 2x and taking the heights of each 
rectangle at the midpoint of each interval, the values x = 2 and x = 4, as shown in Fig. 5.  
The sum of these two rectangles is denoted by the mid-point area, )2(

MA , where, 
 

                     14)5)(2()2)(2()2( MA     
 
    This approximation is easy to compute and is usually about as accurate as the trapezoids. 
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Table 2              x        a = x0             x1              x2               x3             b = x4 
                             
                                   y=f(x)   f(x0) = y0    f(x1) = y1   f(x2) = y2   f(x3) = y3     f(x4) = y4        

3.3  THE GENERAL CASE 
 
We can carry out this procedure for any general function f(x) 0  on any interval of the x-axis.  
We will again divide the interval from a to b into four parts, as in Fig.6,  although it can be 
divided into any number of parts.  If we had divided it into 10 parts or 100 parts the 
approximation to the actual area would have been better.  In fact if we divide the interval into n 
parts and let n approach   the approximation will approach closer and closer to the actual area. 
 
Remark 1:  To find the area under a curve you do not have to draw the graph.  Just follow the 
procedure outlined below. 

  a.  Divide the interval from a to b into n equal parts, each of length,  h=
n

abx 
 .  In our 

example, n = 4 and 1x ,  where the division points are at : x0 = a,  x1 ,  x2 , x3 , x4  = b spanning 
the interval from x = a to x = b with corresponding y values:  y0 , y1 , y2, y3 , y4 shown in Fig. 5. 
 
b. Make a table of x and y = f(x). 
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 c. Compute the area by taking the left point of each interval (all values of x in Table 2 except the 
last) that I refer to as the  ‘left area’  )4(

LA   

       xxfxxfxxfxxfxxfA
k

k
kL  





)()()()()(
3

0
3210

)4(  
b

a

dxxf )(               (1) 

          Note that we have used summation notation.  If we change from 




3

0

k

k
to 

b

a

and replace 

x by dx we can see    

          why 
b

a

dxxf )(   is a good notation for the area under a curve and above the x-axis.  Also 

note that we divided the interval from a to b again into four segments. 
 
   d.  Compute the area with the right endpoints (at all values of x except the first) or the “right 
area,”  )4(

RA  : 
           

                      xxfxxfxxfxxfxxfA
k

k
kR  





)()()()()(
4

1
4321

)4(                 (2) 

 
  e. Compute the trapezoids, )4(T : 
 

                     )222(
2 43210

)4( yyyyyhT                                                             (3)  

   
 f.  Compute )2(

MA  : 
 

                             xxfxxfAM  )()( 31
)2(                                                              (4)  

 
Problem 1:   
 
Here are four functions and four intervals to apply this method to.  For each curve compute:  

)4(
LA , )4(

RA , )4(T , and )2(
MA . 

 
a.  =  f(x) = x2,   [1,3];    b.  f(x) = 3/x2,   [1,3];   c. f(x) = x   [1,3];   f(x) = 4x (1-x),   [0,1]    
 
The following are the exact areas for these functions: a) A = 8.667; b) A = 2; c) A = 4;  
d) A = 0.667.  See how closely these areas are approximated by your values. 
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3.4  SIGNED AREAS 

 
What if f(x) is not 0  for all x such as the linear function f(x) = x on the interval [-2,2] shown in 
Figure 7? 

If we apply our method to this function, we see that it has a positive value when f(x) 0   and a 
negative value when f(x) 0 .  This means that when the function is positive the area is positive, 

but when the function is negative the area is negative.  So we can say that the integral, 
b

a

dxxf )( , 

will always represent a signed  area, SA.  Since the positive area in the example is 2 units while 
the negative area is – 2 units, SA =2 + (-2) = 0.   
 
Example 2: 
 
Consider the curve,   y + 2 = | x | shown in Fig. 8.   In other words, the absolute value curve that 
we introduced in Section 2.9 has been translated down 2 units. 
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Since the curve is entirely below the x-axis, the area caught between the x-axis and the 
curve has area  - 4 units as you can easily see. 
 
Example 3:   
 
Fig. 9 shows the graph of xxxxf 117)( 23   crossing below the x-axis at about x = 
2.38.  The integral is the signed area or the area above the x-axis, A1, minus the area 
below the x-axis, A2.  Some of you may have a calculator that enables you to compute the 

value of 
b

a

dxxf )(  if you input f(x), a and b.  Computing the integral with a calculator 

shows that, 
 

                                            
4

0

23 67.2)117( dxxxx  

                                           
Breaking the integral into two parts and computing each one separately gives, 
 

                      
38.2

0

23 72.7)117( dxxxx    and    
4

38.2

23 05.5)117( dxxxx  

 
   so  A1 = 7.72  and A2 = 5.05.  Then as we would expect, 
 

                        
4

0
21

23 67.205.572.7)117( AAdxxxx   
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Fig. 9
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3.5  TOTAL AREA 
 
To find the total area, reckoned as a positive number, caught between the x-axis and the curve 
we are effectively first finding the absolute value of f(x), i.e.,  
 

                     xxx
xf

117
|)(|

23 


  ,      x 0  
                                )117( 23 xxx  ,  x > 0 

 
and then finding the signed area under the y = |f(x)| curve. 
 
In general, the area A caught between the curve of y = f(x) and the x-axis on the interval [a,b] is, 
 

                             
b

a

dxxfA |)(|                                                    (5) 

 
If we wish to find the actual area caught between the curve and the x-axis we must draw a graph 
of the function, and those intervals at which the function becomes negative we have to make 
them positive.   Therefore in the last example,  
 
                          Total shaded area = 7.72 + 5.05 = 12.77. 

In other words, where f(x) is negative we make it positive after which, 
 

                                    
4

0

|)(|77.12 dxxf .

{
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Remark 2:  To find the signed area, SA, you can fly blind.  There is no need to use a graph.  On 
the other hand, to find the actual area caught between the curve and x-axis, you will need to 
graph the function so that you can tell where it is positive and where it is negative. 

3.6  AVERAGE VALUE OF A FUNCTION 
 
       A student takes three exams in M113 and scores:   75% on exam 1, 60% on exam 2 and 96% 
on exam 3.   The average grade on these exams is: 
 

                                        72
3

965070



avgG  

The scores are plotted on Fig. 10.   

Notice that, 
 
            avgG  area under the curve/length of the interval on the x-axis. 
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This will always be the case.  If you want to find the average value of f(x) over the interval [a,b], 
the result will be, 
 

                                     
ab

dxxf
f

b

a
avg 


 )(

                                                           (6)
 

where   
b

a

dxxf )(   is the signed area between the curve and the x-axis over the interval [a,b]. 

 
Problem 2:  Find the average values of the functions in Problem 1 over the given intervals. 

3.7  THE MEAN VALUE THEOREM FOR INTEGRALS 
 
A very important result from the theory of calculus is suggested by Eq. 6.   There exists a value 
of x = x* in the interval [a,b] such that, *)(xff avg  .  This is called the Mean ValueTheorem of 
Integrals and generally stated as follows: 

Theorem 1 (Mean Value Theorem):  There exists,  bxa  *  such that 
ab

dxxf
xf

b

a



 )(

*)( . 

 
The proof of this theorem follows from two other fundamental theorems of calculus.  
 
Theorem 2:  If f(x) is continuous on a closed interval [a,b] (the interval includes its endpoints) 
then f(x) takes on its maximum and minimum values on [a,b]. 
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No proof of this theorem is given, however, it appears evident by looking at Fig. 11.  From   

 

Remark 5:  If the interval is not closed, the theorem might be false, e.g., consider f(x) = 1/x on 
the interval (0, 1].   This interval does not include x = 0.  Notice that as x  0 the values of the 
function get bigger and bigger so that there is no maximum value on the given interval. 
 
Remark 6: This theorem will play a major role in Chapter 12 where we seek to find maxima and 
minima of functions.    
 
The next theorem is known as the Intermediate Value Theorem 
 
Theorem 3 (Intermediate Value theorem):   If f(x) is a continuous function on the interval 
[a,b],  f(x) takes on every value between its maximum and minimum values.     
 
A look at Fig. 11 makes this theorem seem obvious.   Clearly f(x) takes on every value between 
its maximum and minimum values.  However, this important theorem has variants that are not so 
obvious.  Consider the following problem about a traveling monk. 
 
The Traveling Monk Problem: 
 
A monk wishes to climb the holy mountain from the base camp at the bottom of the mountain to 
the holy temple at the top.  There is a single path up the mountain, and during his trip up the 
mountain he may stop to meditate or sometimes retrace some of his steps to observe wildlife 
along the path.  He starts his climb at 6 AM and reaches the top at 12 noon.  He stays at the 
temple until the following morning when he begins his descent down the path at 6 AM reaching 
base camp at 12 noon and again randomly stopping or retracing steps.   
 
Question:  Is there always, sometimes, or never a time and place during the descent that the 
monk find himself at the identical time and place as on his ascent the previous day?   

Hint:  The solution to this problem involves the Intermediate Value Theorem 
 
Now we can prove the Mean Values Theorem for Integrals.   
 
Proof of Mean Value Theorem for Integrals: 
 
Consider function y = f(x) on closed interval [a,b] where by Theorem 2, f(x) takes on its largest 
and smallest values maxy  and miny  on [a,b], 

Estimate the signed area  
b

a

dxxfA )(   by enclosing the area in a single rectangle of height maxy   

Fig. 11 we can see that the maximum and minimum values of f(x) can occur only at places where 
the slope is horizontal (points c and d, or f ), where the slope is not defined (at cusps or kinks, 
point e or g) or endpoints (a or b).  
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and width (b-a) and another one of height miny  and width (b-a) as shown in Fig. 12.  In other 
words,  

)()()( maxmin abydxxfaby
b

a

                                (7) 

Dividing Eq. 7 by (b – a), 

                                   maxmin

)(
y

ab

dxxf
y

b

a 





                           

But since f(x) takes on every value between  maxy  and miny  on [a,b] and 
ab

dxxf
b

a



 )(
is a number 

that lies between these two limiting values, there must be a value of x = x* on the interval [a,b] 
such that, 
 

                                     
ab

dxxf
xf

b

a



 )(

*)(  

 
This Theorem will be important in proving some connections between calculus and structures as 
we shall do in Lesson 17. 
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