CHAPTER 8

Introduction to Fractal
Geometry

i techiiques of perspective are partienlarly helpful for the re-
alistic drawing of “man-made” objects such as houses, roads,
fences. obe. With regard to drawing and nnderstanding the

appearance of natural objects suel as trees, clouds, mountains and
neln more. there is another nseful braneh of mathematics which we
intraduce in this chapter,

Consider the pictures in Figuee 810 Cane you tell what they vep-

pesendt !

Fignre 8.1 Two pietares From pidt e,

(b)

[ Pignre 8. (a0, niany people wonld recognize a gnu standing in
a ficld: i Fignee 8.1(h). even more of us wonld be able o identily
Hhe sport of rock elimbing,. But i we compare these two pictires 1o
Fioenre 82000 and (b). we see something strange soing on. Whal has
Liappened?




Fignre 8.2, A small stuffed panda (a)
next to the “gia™ from Figure 1(a),
and the same toy panda (b) on the
rock where we superimposed the im-
age of 4 rock climber in Figure 1(b).

Figire 8.3, The toy panda bear on the
“tmountain” - a large rock.

Fignre 8.4, A small piece of
caulillower looks like a miniature
version of the whole cauliflower. (In
fact. a picce like this is called a floret,
which means a small flower. )

16 Chapter 8

(b)

In fact, the “feld” and the “monntain™ were some dry grass and a
large rock (Figure 8.3), both near a baseball ficld at the south end of
IFranklin & Marshall College: the gnu was a 10-inch plastic toy, and
we PhiotoShopped the mountain climber in. We nsed simple tricks to
create the effect ol larger landscapes than we actnally had available.

What made this switch so effective is that many objects look the
same at dillerent scales. Dry grass looks somewhat like tall grass.
Small rocks look like big rocks, and both look like the side ol a monn-
tain. Small picces of clouds have the same shape and struciure as
the whole cloud. A small picce of cauliflower (a florvet) looks like the
whole cauliflower (Figure 8.4).

In the 1970s mathematician Benoit Mandelbrot described sell-
similar objects by coining the name “[ractals,” from the Latin roof
Jractus meaning fractured or broken. That is, il yvou “fractire” (or
break off) a little picce of a fractal, it looks like the whole thing.
Many natural objects have this property ol “scll-similarity,” and this
property is of interest both artistically and scientifically.

To see how [ractals approximate natural forms, and at the same
time suggest techniques which an artist might use to render snch
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[orms, consider the sequence of pictures in Fignre 8.5. The frst

picture shows a radimentary tree branch with 5 branch tips. It is not
a [ractal. hecanse it lacks an hmportant property of [ractals called
solf-sonilarily, which in a broad interpretation means that parts of
a shape are exact, or nearly exact, miniatures of the whole shape,
I the second picture, each of the 5 branch tips is replaced with an
exact miniature of the branch in the first picture. The second branch
15 not a fractal either, because the 5 sub-branches each have 5 tips,
2 25 branch tips. The third
branch in the sequence is an attempt to remedy this; each of the
5 sub-branches is a 25-tipped miniature of the second branch. Of
conrse, the problem is that the current branch now has 5% = 125
branch tips, so self-similarity has not yet been attained. Indeed, the
ignre will not. become self-similar —a fractal —until the process has
in elfect been repeated an infinite munber ol times.

while the whole branch now has 5

Fortunately, we don’t need to wait forever Lo see the true fractal
branch. The fourth branch in the sequence is the result of repeating
the process 3 more times (5% = 15,625 branch tips), and it is visually
indistingnishable from the true fractal limit. This is because the
subsequent branch tips which would be added would be so small as
to be virtnally invisible. Most importantly, notice how the character
ol the hranch has changed in the fourth picture. It is “organic” as
opposed 1o “mechanical™ or “geometrical,” even though we have used
amathematical algorithm—a rigid step-by-step process —to create it.
i this computer rendering, the branch tips have even merged to form

Figure 8.5, A fractal tree branch
made by algorithimic drawing.




'"For a readable and fascinating in-
troduction to these ideas, see Linden-
mayver, A and Prusinkiewicz, P, The
Algorithmic  Beauly of Plants, New
York, Springer-Verlag, 1996,

Figure 8.0, Traditional  Japanese
woodblocks (left) and their modern
fractal counterparts (right).

“Paterson, L., Dillusion-limited agere-
gation and two-fluid displacements in
porous media, Physical Review  Let-
bers, vo B2, pp. 1621- 1624,
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leaves, reminding us that not only do trees contain leaves, but leaves
also contain trees, in the form of their treelike vein structure. Results
like this not ouly give hope to the artist secking hints on drawing [rom
nature, but they also suggest ideas about the structure and growth
of plants-—a notion that plant biologists have taken seriously.”

Evidence suggests that artists have also taken fractal algorithins
seriously, and not just recently. Compare, for example, the Japanese
woodblocks in Fignure 8.6, which we've paived with modern computer-
generated images. Figure 8.6 features three pairs of images. The lefl
member of each pair is a 19th century Japanese woodblock print, and
the right member is a computer-generated fractal. Thongh startlingly
similar to their companion images, the woodblocks predate the [rac-
tals by more than 100 vears! The frst image is a detail fron the
woodblock, Shono: Driving Rain, from the sevies, The Fifty-Three
Stations of the Tokaido, by Ando Hiroshige (1797 1858). The [ractal
to its right was generated by a process called an “lterated Function
System,” which we discuss later. The second woodblock is Boals i
a Tempest in the Trough of the Waves off the Coast of Choshi (de-
tail), from the series. A Thousand Piclures of the Sea, by Katsnshika
Holkusai (1760-1849). The fractal to the right ol it is called a “quadric
Koch island,” a name coined by Mandelbrot. The third woodblock is
a panel from the triptyeh, Short History of Greal Japan, by lkkasai
Yoshitoshi (1839 1892). The accompanying fractal is a mathematical
model of two-fluid displacement, in a porous medinm alter Paterson.”

Drawing fractals is much more meditative than drawing in per-
spective. Patience, repetition, and time arc all good attributes (o
liave. Here are some practice exercises that demonstvate this. (Give
yoursell a half-hour to an hour to do each one; playing pood music
lLelps as you work.)
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Practice Exercises.

[. Draw a [ractal tree. Start with a figure like the one at the lelt,
which consists of a trunk and three main branches (notice that
the left branch begins slightly below the right branch). Then
turn cach of the three branches into a tree by adding two new
branches at approximately the same angle as on the orginal
tree: vou'll now have 9 branches. Repeat this process (on each
ol the 9 branches, create a tree by adding two new branches:
then ereate trees on the resulting 27 branches, and so on). In
Figure 8.7 we show yvou several initial steps, plus a version that
appears alter many iterations,

W@

(a) (h) (©) (d) (c) (N

Figure 8.7, Steps in drawing a fractal tree (a-e), and a computer rendering () after many iterations.

I Use o rualer to draw a [ractal “cauliflower.” Begin with a hor-
izontal line across the bottom of the paper. From now on,
every tme vou see a line segment, vou will add on an inverted
“V whose height is approximately 1/3 that of its length, as in
Fioure 8.
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Figure 8.8 Steps in drawing a “cauliflower” (a-g), and a computer rendering (h) after many iterations. Part (i)
shows Lhe region above the cauliflower shaded in black.

Here’s an exarmple of a slightly different version of the canlillower-
drawing technique applied to lightning bolts. On the rvight of Fig-
ure 8.9 is a detail from a photo ol a lightning storm over Boston.
We begin by marking fowr dots A, B, C'. D on one of the lightuing
bolts. In step (i) of the figure, we draw the polygon ABCD as a lirst
approximation to the lightning bolt. In each ol the subscquent steps
(ii)- (iv), we connect the pairs A, B and 3, C and ', D with a scaled
copy of the previous approximation. As indicated, the drawing in
step (iv) compares pretiy well with the actual lightning bolt. This
approach isn't completely scientific, but it shows that iterative draw-
ing techniques can lead to nice results. In the next chapter. we'll see
how a more scientilic study of coastlines helped spur the developient
of fractal geometry.
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compare

Figure 8.9. Left: Recursive drawing of a lightning bolt. Right: Detail from photograph of a lightning storm over
Boston, Step (iv) is a fair approximation of the lightning bolt. Photo: U.S. National Oceanic and Atmospheric
Adiministration. Photographer: Boston Globe.

HI A “mathematical-looking” fractal that's easy to sketch is the
Sierpinisti triangle (or Sierpinski gasket), named after Polish
mathematician Waclaw Sierpinski. In Figure 8.10 we start with
an egnilateral triangle (a), then draw an upside-down triangle
inside it by conneeting the midpoints of the larger triangle (b).
At Hrst you might want to lightly mark a dot inside this “mid-
point triangle” o indicate that you won't draw inside that tri-
angle anymore. In (¢) we draw midpoint triangles inside the
remaining three (right-side up) triangles and mark dots to keep
the new midpoint triangles empty. In (d) we draw midpoint
triangles inside the nine remaining triangles. Try this out and
keep drawing nutil the triangles become so small you can't draw
inside themn anymore. The “limiting shape™ you have approxi-
mated is the Sierpiniski triangle.
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(a) (b) (c)

Figure 8,100 Steps in drawing the Sierpiniski triangle. The dots indicate triangles that remain empty.

IV. There's a right-angled version ol the Sierpinski triangle that you
can build up using squares instead of triangles. Figure 8.11(a)
shows a square on a grid, and Figure 8.11(b) shows the three
hall-sized squares you draw in the next step. One hall-sized
square goes on top ol the big squarve, one goes in the lower
left. corner of the big square, and goes immediately to the right
ol the big square as shown. (The grid is for precision.) Fig-
ure 8.11(c) shows how to proceed next. The rule is this: at the
end of each completed stage, focus ouly on the smallest squares
you just drew. For each such square, draw a square hall as hig
on top of it as indicated, a square hall’ as big in the lower left
corner, and a square hall as big immediately to the vight ol it.

. Use the grid lines to be precise, and keep going. Now start. over

: in Figure 8.12 (or a photocopy ol it). Be sure to count squares

to keep your drawing accurate. You'll see that the fractal is

in a sense a union of squares, but it doesn’'t really look like it
when it’s fully developed!

(a) (b) (c)

Figure 8.11. Guide for drawing a right-angled Sierpiiski triangle using squares.
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Figure 8.12. Template for drawing the right-angled Sierpinski triangle.




Figure 5,13, The first three steps in
drawing the Sierpinski carpet (a-c),
and the appearance of the actual
fractal (d). The fractal is the
remaining white part after the
(inlinitely many) holes have been

subtracted.
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Another classic fractal attributed to Sierpinskd is the Sicrpirishi
carpet, whose construction appears in Figure 8.13. This tiine we make
the fractal white on a black background.

To draw the Sierpinski carpel we start with a white square in
Figure 8.13(a), use lines to divide it into nine equal-sized squares.
and then blacken in the “middle ninth™ square. In () we apply the
same procedure to the remaining 8 white squares, and in () we apply
it to the remaining 64 white squares. Part (d) shows the ractal (the
white part) after the procedure has been carried out indelinitely.

While the Sierpinski triangle and the Sierpinski carpet may look
more “mathematical” and not as natural as the [ractal tree and the
fractal canliflower, they nevertheless contain essential features ol pat.
terns in nature. As an example, we modily the construetion of the
Sierpiriski carpet in Figure 8.13 to model cratering patterns in 1Mig-
ure 8.14.
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In Figure 8.14(a) we punch a “giant” erater of width (diameter) w
imto the surface, much like punching the square hole in Figure 8.13(a).
In Figure 8.14(b) we add 8 randomly-placed “large” craters of width
(1/3)w, mueh like we added the 8 square holes in In Figure 8.13(b).
I Fignre 8.14(¢) we randomly place 82 = 64 “medium” craters of
width (1/3)%w = (1/9)w, much like we added the 64 s¢uare holes
in Figure 8.13(¢). In Figure 8.14(d) we randomly place 8% = 512
“small” eraters of width (1/3)%w = (1/27)w, and in Figure 8.14(¢) we
raudomly place 81 = 4096 “tiuy” craters of width (1/3)4w = (1/81)w.
Stopping here, we compare the result with a photograph of the surface
ol the Moon in Figure 8.14(1).

(b) (c)

(d) (c)

Figure 8.11. Mimicking the construction of the Sierpinski carpet, we start with one “giant” crater (a) of width w: add
8 “large” randomly-placed craters, each 1/3 the size of the giant one (b); then 82 = 64 “medinm” craters, each 1/3
the size of the large ones (¢); then 8% = 512 “small” craters, each 1/3 the size of the medium ones (d): and 8 = 1006
Sy craters, each 1/3 the size of the small ones (e). At each step we use a computer program to randomly place
the eraters in the gray square. Part () is a photograph of the surface of the Moon.




“Benoit Mandelbrot made this com-

parison in The Fractal Geomelry of

Nature, New York, W. H. Freeman,
1983, pp. 302 303,

[\xEaEL o . 2
I'his section is optional,

? Such a fuction is often called a con-
bracting sumilarily transformation be-
canse any shape inside the unit square,
sy oa little triangle, gets transformed
into a smaller (contracted) iriangle
that s similar 1o the original.
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Even with the simplistic “craters” we were drawing. the compar-
ison is not too bad. In fact, for many bodies in the solar system the
observed mathematical relationship between the munber of craters in
a given region and their diameters bears a strong relationship to the
nmmber and sizes of the holes in the Sierpiniski carpet, the Sierpinski
triangle, and other fractals.® In this case we have modeled the surlace
of the Moon as a kind of random Sierpitiski carpet with round holes.

We will make this comparison more precise in the next chapter.
For now, we simply wish to note that even highly regular, geometric
fractals like the Sierpiniski carpet can embody important aspects of
the rugged and apparently irregular forms of nature. By comparing,
fractals with nature, we can more fully understand nature’s patterns
and thus do a better job of drawing them. For example, the previons
comparison immediately shows that when drawing craters, we shonld
draw only a few large craters, many more medimn-sized craters, and
many, many more small crate

Iterated Function Systems.’ How do computers draw fractals?
They olten uses a process called an “lerated Function System,” ov
IFS. For our purposes we will think of a funetion as a rule for trans-
forming shapes (sets) in the zy-plane into other shapes. For example.
Figure 8.15(a) shows the unit square P—the square with corners al
(0,0}, (1,0), (1,1) and (0,1). We have labeled it with a big “I'" to
keep track of the way it gets translormed. A funetion is nsnally de-
noted by a letter, so let us define a function [ by the way it transformes
P into the shape labeled f(P?) (vead *f ol P") in Figure 8.15(b}. The
new shape f(P) is called the image of P. The iinage [( ) is a square
hall the size of P in each divection; it has been ipped (reflected) so
that we see the “back side” of PP; it has been rotated 907 so thal it
lies on its side; and it has been moved so that its lowest side stretehes
from 1/2 to 1 on the w-axis. By showing the flipped-over letter P as
being undistorted in Figure 8.15(b), we mean to snggest that [ does
not distort the interior of the it square as it shrinks it and moves
it around.”

Having defined how [ transforms the unit square and its interior,
we now have a function that takes its inputs as shapes inside the unit
square and transforms them to other shapes inside the nnit squae
in a well-defined way. For example, Figure 8.15(c¢) shows a cat-like
shape C'; to see how it 15 transformed by f into its image f(C7), we
imagine it being painted onto the nnit square and going along for the
ride, as in Figure 8.15(d). The transformed cat f(C') is hall the size
of the original, it’s located in the same relative position inside the
transformed square, and of course it gets [lipped aronnd backwards
with the square, so its tail appears to point to the opposite side of
its body.
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A A
the unit square P :
[ -
the image f(P)
1/21
0 [ T 0 112 | g
(a) (b)
A A
c
I+ | 4
RC)
1 1/21 : . \ -,
0 | T 0 12 | g
(©) (d)

We'll deal with several functions at once (that’s why these are
called “Founetion Systems” ), and we'll repeatedly apply (iterate) the
[uctions over and over (that’s why this section is called “Tterated
Funetion Systems” ). By this we mean that we will apply a function
to a shape. then apply the same or another function to the resulting
shape, and so on.

An example of the repeated application of [unctions appears in
Figure 8.16. Parts (a) and (b) illustrate a new function ¢ that also
transforins shapes inside the unit square. The function g transforms
the mnit square 72 by shrinking it towards the origin by a factor of
/2. In Figure 8.16(c) we then transform g(P) with the function [ of
Fignre 8.15 1o obtain the set f{g(P)) (“f of g of P7), which is also
written as [e g(F?). That’s because we can think of this application
ol two [unetions as a single [unction denoted by f o g, called the
coinposition ol two inctions,

Figure 8.15. How the function [ {rans-
forms the unit square 17 and the cat (7
Notice that becanse the unit soquare
gets flipped (reflected) the cat does
too, so its tail points in the opposite
direction.




Figure 8,16, Parts (a) and (b) illus-
trate the finction g, Parts (¢) and (d)
illnstrate compositions involving [ and

. where [ s the function illustrated

in Figire 8.15. Notice Lthat the images
Tagld)y and go f{ ) are not the same.
Can vou sketeh go g(P2) and fo f(P)?
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F 3 3
l | 4
g(P)
1/2
0 I g 0 12 I -
(a) (b)
A A
outline of f{P)’ outline ol g(P)
. B
Sfog(P)
L | gofP)
-n i .ﬂ — "
0 1 " 0 12 | -
(c) (d)

Notice that the notation fog(P) tells us to fivst apply g to 17, then
apply [ to the result. In Figure 8.16(d) we apply the functions in the
reverse order to obtain g o f(); notice that go [(P7) and [ o g(]7)
are different, hence g o [ and f o g are different. functions. Can you
sketch g o g(P) and fo f(P)?

In our modern world we use [unction compositions all the Gime.
Let’s say you take a digital photo T ol a tree and you turn the camera
sideways to get the whole thing in the photo. When yon fransler
it. to your computer, the photo T appears sideways, so you rotate
it with a [unction » provided by yvour computer’s image processing
software. Now you can enjoy looking at the corrected photo +(1') on
your computer. Later you want to email the photo to a [riend, bt
it’s too big—it takes up too much memory- so you shrink it to a
smaller size with another function s. What vou send your [viend is
the image sor(7T).
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Now let’s look at an Iterated Function System. Consider the three
hmctions . f2, fy illustrated in Figure 8.17. The first iteration in
Figure 8.17(h) shows that all three functions shrink the unit square
P to hall its size and then move it somewhere. The function fi moves
the reduced version ol 17 to the top center ol the square, f2 moves it
to the lower left corner, and 3 moves it to the lower right corner.

In Fignre 8.17(¢)- the second iteration we have labeled the sets
Sro i) and fyo f3(P). Which square is the set fso f1(P)? Which
is fuo f5(7)7 In the third iteration in Figure 8.17(d) are even smaller
squares, representing sets like fi o fy o f4(P)—which square is that?
The tiny squares in the fourth iteration in Figure 8.17(e) represent
images of 7 under fourfold Mimetion compositions, such as fa o fi o
o fa(P).

Now we can see the value of functions and himetion compositions
in fractal geometry. As we use more and more complex compositions
in Figures 8.17(a) (e), the resulting collection of squares more and
more closely resembles an isosceles Sierpinski triangle whose altitude
and base are equal. Figure 8.17(f) depicts the 6th iteration. It con-
sists of 3% = 720 images of P, each (1/2)% = 1/64 the width of P.
Al the images were easily created in the computer drawing program
Lineform. as they could have been in, say, Adobe Illustrator. (There
is also another inportant way computers generate [ractals with It-
crafed Function Systems, called the Random Heration Algorithmn,
described in detail in Michael Barnsley’s book Fractals Everywhered.
[t makes use of the fonnulas that define functions like fi, fo, and f3.)

Notice how closely Figure 8.17(1) resembles the isosceles Sierpinski
triangle A in Figure 8.18. The set. A just fits inside the unit square,
so its altitude and base both have length 1. Using more iterations
waonld have inereased the resemblance further. The set A is called
the altroctor of the TFS; you can see how the successive iterations are
“attracted” 1o it In ters of lunctions, the true fractal A consists
ol three smaller copies of itself; it is the union of the sets f1(A) (the
top part). f2(A) (the bottom left part), and f3(A) (the bottom right
part). In set notation, § = fi{A)U fo(A) U f3(A).

Barnsley, M., 1988, Fraclals Focry-
where (San Diego: Academic Press).




Figire 8,17, [terating functions to ap-
proximate an isosceles Sierpiniski tri-
angle with suecessively smaller and
more mimerots images of the unit
square 170 After 1 iteration (b) there
are 3' = 3 images of P, cach (1/2)" =
/2 the width of 2. After 2 iterations
(¢) there are 32 =9 images of P, each
(1/2 2 = 1/4 the width of P. After
3 iterations (d) there are 37 = 27 im-
ages of 12, each (1/2)* = 1/8 the width
of 2. Alter 4 iterations (¢) there are

30 = 81 images of 17, cach (1/2)* =
1/1G the width ol 2. Part () shows
the result after 6 iterations: 3% = 729

hnages of P each (1/2)" = 1/64 the
width ol 2. All the images were cre-
ated in a standard computer drawing

PEOLIHIT.

f1(A)

HAl [A)

Figure 818, The isosceles Sierpinski
triangle A on the left just fits inside
the nnit square . As suggested on
the right, A satisfies

5= 1{A)U f2(A)U f3(A).
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In the next example, we're going 1o change one of the hnetions
a little and see what happens. In the previous example, we assiined
that the [unctions preserved orientation and direction: there were no
rotations and no flips. In Figure 8.19, we'll forego that assumption,
but we'll still have [; move the reduced version of 2 up and center, [
move it down and left, and [ move it down and rvight. The difference
is that fi ips the reduced version ol P and rotates it 907,
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Iu Figure 8.19 we draw the first iteration (b) and part of the sec-
ond iteration (¢) of the TFS. Your job is to finish the second iteration,
and draw the third iteration (d). Part (¢) shows the fourth iteration,
and () shows the attractor of the IFS.

I Figure 8.200 below, we don’t tell you the steps we took to draw
the Mractals: we ask yon to figure that oul vourself. Each of the
pietures in Fignre 8.20 is the attractor of an [terated Function System

Figure 8.19. Part {(a) shows the fivst it-
eration ol an IFS. Your job is to draw
the rest of the second iteration in (c)
and all of the third iteration in {(d).
Part. (e) shows the fourth iteration,
and part ([) is the attractor of the IFS.
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(each with three functions that send images to the top conter. lower
left, and lower right). Each attractor is shown inscribed in the unit
square. Determine the direction of the P's in the first iteration ol the
process —for example, as in Figure 8.19(b}. Assume that the initial
stage is a P in the usual position as in Figure 8.19(a). In cases where
there is a lot of synmetry, there can be more than one correct answer,
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Figure 8.20. Can you guess the IFS in each case?

(h)




