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I. THEORETICAL ANALYSIS

In this section, further details of the theoretical anal-
ysis are provided. As described in Ref. [S1], the normal-
ized Lagrangian for two magnetically coupled spinners is
approximately given by
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where I represents the moment of inertia of each spinner,
ϕ1 and ϕ2 the rotation angles of the two spinners from
the equilibrium states. The parameters α and β repre-
sent the coefficients in potential energy terms and depend
on the strengths of the magnets attached at the end of
spinner arms and the distance between the magnets. If
we represent the parameter β for the spinner pairs con-
nected by the blue, red, and green lines in Fig. 1(b) in
the main text as βb, βr, and βg, the condition for the
gap opening is βg < (βb + βr)/2, under which the sys-
tem becomes topological if βb < βr and nontopological if
βb > βr. For the topological insulator spinner systems,
the parameter values are βb = 106.7 Hz2, βr = 280.0 Hz2,
and βg = 83.4 Hz2.
Applying periodic boundary conditions in the n2 di-

rection, the localization length ξ(k2) for the edge states
with the wave vector k2 is found to be
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similar to the localization length for the 1D SSH system
[S2]. The amplitude of the oscillation for the left-edge
state with the wave vector k2 decays as

Ak2(n1, n2) =
{
Ae−(n1−1)/ξ(k2) for odd n1
0 for even n1
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and for the right-edge state as

Bk2(n1, n2) =
{

0 for odd n1
Be−(N1−n1)/ξ(k2) for even n1
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in the limit of the large edge-to-edge distance, N1 . With
the parameter values given above for the topological spin-
ner systems, we obtain the localization length ξ(k2) ver-
sus k2 as shown in Fig. S1, with ξ(k2) ranging between
0.9 at k2 = ±π and 3.1 at k2 = 0 in the unit of the

FIG. S1. Localization length ξ(k2) versus the edge state wave
vector k2 in the limit of the large edge-to-edge distance N1
for the topological spinner systems. ξ(k2) varies between 0.9
at k2 = ±π and 3.1 at k2 = 0.

spinner-to-spinner distance. The above theoretical re-
sults are used to analyze the experimental results shown
in Figs. 4(e) and 4(f) in the main text.

The frequency splitting ∆f(k2) between the two
edge modes with the wave vector k2 is ∆f(k2) =
CN1e

−N1/ξ(k2) in the limit of large N1/ξ(k2). Since the
localization length ξ(k2) is largest at k2 = 0, the edge
band width ∆f0 is given by

∆f0 = CN1e
−N1/ξ0 (S5)

in the limit of large N1/ξ0, where ξ0 = ξ(k2 = 0), the
localization length at k2 = 0. The plot of ln (∆f0) versus
N1 for experimental data is fitted into ln (∆f0) = lnC +
lnN1 −N1/ξ0 to estimate ξ0, as shown in Fig. 2(l) in the
main text.

II. ADEQUACY OF THE CHOSEN SPINNER
SYSTEM SIZES

In this section, the sizes experimentally chosen for the
spinner systems are shown to be adequate to demonstrate
the flatness of the edge bands. Since Fig. 2(k) in the
main text demonstrates that experimental results agree
well with numerical simulations for the edge band width,
numerical simulations with open boundary conditions are
used for the analysis.

First, for the N1 ×N2 spinner system, we fix N1 to 4,
6, 8, 10, and 12, the values chosen for the experiments,
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FIG. S2. (a) Symbols: Edge band width ∆f0 versus N2,
calculated for N1 ×N2 systems with N1 = 4, 6, 8, 10, and 12
and open boundary conditions. Horizontal solid lines: ∆f0
calculated for N2 = 1,000 as a large N2 limit for each case
of N1. Vertical dashed line: N2 = 6 chosen for experimental
setups. (b) Edge band width ∆f0 versusN1, calculated for the
N1 ×6 systems with open boundary conditions. The gray area
approximately represents the experimental resolution, below
which the edge band width cannot be measured reliably.

and varies N2 up to 1,000 to see how the edge band width
∆f0 depends on N2. The results in Fig. S2(a) show that
the edge band width ∆f0 increases as N2 increases. The
values of ∆f0 at N2 = 1, 000, which could be considered
as the large N2 limit, are shown as horizontal lines. The
results show that the edge band widths ∆f0 at N2 = 6
(vertical dashed line), the size chosen for experimental
setups for the results in Fig. 2 in the main text, are
only about 0.12 ∼ 0.03 Hz, or 5 ∼ 15% smaller than the
corresponding large N2 limits for the systems with N1 =
4, 6, 8, 10, and 12, which indicates that the choice N2 =
6 is adequate. Relatively quick saturation of ∆f0 for N2
as small as 6 in Fig. S2(a) is consistent with the edge
band width being determined at k2 = 0 [See Eq. (S5)],
which is insensitive to the number of k2-points.

Next, with N2 fixed at 6, we examine how adequate
the experimental choice of N1 = 4, 6, 8, 10, 12 is to
represent the trend in the edge band width ∆f0 versus
N1. The results in Fig. S2(b) show that the edge band
width ∆f0 continues to decrease as the edge-to-edge dis-
tance N1 increases further up to 30, and becomes below
the experimental resolution, shown in gray area, beyond
around N1 = 12. Rapid decrease of the edge band width
with the increase in N1 from N1 = 4 to 12 reflects the
relatively short localization length, ξ(k2) = 0.9 ∼ 3.1
in the unit of spinner-to-spinner distance for the chosen
experimental parameters. The experimental results for
N1 = 6, 8, 10, and 12 also allow us to reveal exponential
decrease of the edge band width ∆f0 with respect to N1,
consistent with the theoretical predictions, as shown in
Fig. 2(l) in the main text. Therefore, our choice of N1 =
4, 6, 8, 10, 12 and N2 = 6 for experimental setups is ade-
quate to show that the edge band would have a vanishing
width and become flat in the whole projected reciprocal
space in the limit of large edge-to-edge distance.
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