

Schmertmann-Hartman method

Square or circular footing

Long narrow footing

•
$$S = C_1 \cdot C_2 \cdot (q_o - q') \cdot \sum_{0}^{z_2} \frac{I_z}{E_s} \cdot \Delta z$$

•
$$I_{z-max} = 0.5 + 0.1 \left(\frac{q_o - q'}{\sigma_z'} \right)^{0.5}$$

- σ'_z = Effective vertical stress at I_{z-max}
- $C_1 = 1 0.5 \left(\frac{q'}{(q_o q')} \right)$
- $C_2 = 1 + 0.2 \log(10 \times t)$, where 't' is the time

For $1 < L/B \le 10$ interpolate values as follows:

- \bullet I_Z at the base between 0.1 and 0.2
- $\bullet \quad \mbox{For location of $I_{z\mbox{-}max}$ between $B/2$ and B}$
- Depth of strain influence between 2B and 4B.