Schmertmann-Hartman method

Square or circular footing

Long narrow footing

- $\mathrm{S}=\mathrm{C}_{1} \cdot \mathrm{C}_{2} \cdot\left(\mathrm{q}_{\mathrm{o}}-\mathrm{q}^{\prime}\right) \cdot \sum_{0}^{z_{2}} \frac{\mathrm{I}_{2}}{\mathrm{E}_{\mathrm{s}}} \cdot \Delta \mathrm{z}$
- $\mathrm{I}_{z-\text { max }}=0.5+0.1\left(\frac{\mathrm{q}_{\mathrm{o}}-\mathrm{q}^{\prime}}{\sigma_{z}^{\prime}}\right)^{0.5}$
- $\sigma_{\mathrm{Z}}^{\prime}=$ Effective vertical stress at $\mathrm{I}_{\mathrm{Z} \text {-max }}$
- $C_{1}=1-0.5\left(\frac{q^{\prime}}{\left(q_{\mathrm{o}}-q^{\prime}\right)}\right)$
- $\mathrm{C}_{2}=1+0.2 \log (10 \times \mathrm{t})$, where ' t ' is the time

For $1<L / B \leq 10$ interpolate values as follows:

- I_{Z} at the base between 0.1 and 0.2
- For location of $\mathrm{I}_{\mathrm{Z} \text {-max }}$ between $\mathrm{B} / 2$ and B
- Depth of strain influence between 2B and 4B.

