CS 341 Practice Final

Marvin K. Nakayama
Computer Science Dept., NJIT

1. Short answers:
(a) Define the following terms and concepts:
i. Union, intersection, set concatenation, Kleene-star, set subtraction, complement

Answer:

- Union: $S \cup T=\{x \mid x \in S$ or $x \in T\}$
- Intersection: $S \cap T=\{x \mid x \in S$ and $x \in T\}$
- Concatenation: $S \circ T=\{x y \mid x \in S, y \in T\}$
- Kleene-star:
$S^{*}=\left\{w_{1} w_{2} \cdots w_{k} \mid k \geq 0, w_{i} \in S \forall i=1,2, \ldots, k\right\}$
- Subtraction: $S-T=\{x \mid x \in S, x \notin T\}$
- Complement: $\bar{S}=\{x \in \Omega \mid x \notin S\}=\Omega-S$, where Ω is the universe of all elements under consideration.
ii. A set S is closed under an operation f

Answer: S is closed under f if applying f to members of S always returns a member of S.
vii. Church-Turing Thesis

Answer: The informal notion of algorithm corresponds exactly to a Turing machine that always halts (i.e., a decider).
viii. Turing-decidable language

Answer: A language A that is decided by a Turing machine;
i.e., there is a Turing machine M such that

- M halts and accepts on any input $w \in A$, and
- M halts and rejects on input input $w \notin A$.

Looping cannot happen.

ix. Turing-recognizable language

Answer: A language A that is recognized by a Turing machine;
i.e., there is a Turing machine M such that

- M halts and accepts on any input $w \in A$, and
- M rejects or loops on any input $w \notin A$.
x. co-Turing-recognizable language

Answer: A language whose complement is Turing-recognizable.
xi. Countable and uncountable sets

Answer:

- A set S is countable if it is finite or we can define a correspondence between the positive integers and S.
- In other words, can create (possibly infinite) list of all elements in S and each specific element will eventually appear in list.
- An uncountable set is a set that is not countable.
- A common approach to prove a set is uncountable is by using a diagonalization argument.
xiii. Function $f(n)$ is $O(g(n))$

Answer: There exist constants c and n_{0} such that $|f(n)| \leq c \cdot g(n)$ for all $n \geq n_{0}$.
xiv. Classes P and NP

Answer:

- P is the class of languages that can be decided by a deterministic Turing machine in polynomial time.
- NP is the class of languages that can be verified in (deterministic) polynomial time.
- Equivalently, NP is the class of languages that can be decided by a nondeterministic Turing machine in polynomial time.

CS 341 Practice Final
xv . Language A is polynomial-time mapping reducible to language B, $A \leq \mathrm{p} B$.

Answer:

- Suppose A is a language defined over alphabet Σ_{1}, and B is a language defined over alphabet Σ_{2}.
- Then $A \leq_{\mathrm{p}} B$ means \exists polynomial-time computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that $w \in A$ iff $f(w) \in B$.

YES instance for problem $A \Longleftrightarrow$ YES instance for problem B
xvi. NP-complete

Answer: Language B is NP-Complete if $B \in \mathrm{NP}$, and B is NP-Hard $\left(\forall A \in \mathrm{NP}\right.$, we have $\left.A \leq_{\mathrm{p}} B\right)$.

Typical approach for proving language C is NP-Complete:

- first show $C \in \mathrm{NP}$
- then show a known NP-Complete language B satisfies $B \leq_{\mathrm{p}} C$.
xvii. NP-hard

Answer: Lang B is NP-hard if $A \leq \mathrm{p} B$ for every lang $A \in \mathrm{NP}$.
(b) Give the transition functions δ (i.e., give domain and range) of a DFA, NFA, PDA, Turing machine and nondeterministic Turing machine.

Answer:

- DFA, $\delta: Q \times \Sigma \rightarrow Q$,
where Q is the set of states and Σ is the alphabet.

- NFA, $\delta: Q \times \Sigma_{\varepsilon} \rightarrow \mathcal{P}(Q)$,
where $\Sigma_{\varepsilon}=\Sigma \cup\{\varepsilon\}$ and $\mathcal{P}(Q)$ is the power set of Q

- Nondeterministic Turing machine,
$\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times\{L, R\})$

Multiple choices when in state q_{i} and read c from tape:

$$
\delta\left(q_{i}, c\right)=\left\{\left(q_{j}, a, L\right),\left(q_{k}, c, R\right),\left(q_{\ell}, a, L\right),\left(q_{\ell}, d, R\right)\right\}
$$

(c) Explain the "P vs. NP" problem.

Answer:

- P is class of languages that can be solved in deterministic poly time.
- NP is class of languages that can be verified in deterministic poly time (equivalently, solved by poly-time NTM).
- We know that $\mathrm{P} \subseteq$ NP.
- Each poly-time DTM is also a poly-time NTM.
- But it is currently unknown if $\mathrm{P}=\mathrm{NP}$ or $\mathrm{P} \neq \mathrm{NP}$.

2. Recall that $A_{\text {TM }}=\{\langle M, w\rangle \mid M$ is a TM that accepts string $w\}$.
(a) Prove that $A_{\text {TM }}$ is undecidable. You may not cite any theorems or corollaries in your proof.

Overview of Proof:

- Suppose $A_{\text {Тм }}$ is decided by some TM H, taking input $\langle M, w\rangle \in \Omega=\{\langle M, w\rangle \mid M$ is a TM and w a string $\}$.

$$
\langle M, w\rangle \longrightarrow H \quad \begin{aligned}
& \text { accept, if }\langle M, w\rangle \in A_{\text {TM }} \\
& \text { reject, if }\langle M, w\rangle \notin A_{\text {TM }}
\end{aligned}
$$

- Define another TM D using H as a subroutine.

- What happens when we run D with input $\langle D\rangle$?
- D accepts $\langle D\rangle$ iff D doesn't accept $\langle D\rangle$, which is impossible.
(b) Show that $A_{\text {TM }}$ is Turing-recognizable.

Answer: Universal TM (UTM) U recognizes $A_{\text {TM }}$:
$U=$ "On input $\langle M, w\rangle \in \Omega$, where M is a TM and w is a string: 1. Run M on w.
2. If M accepts w, accept; if M rejects w, reject."
U recognizes $A_{\text {TM }}$ but does not decide $A_{\text {TM }}$

- When we run M on w, there is the possibility that M neither accepts nor rejects w but rather loops on w.

3. Each of the languages below in parts (a), (b), (c), (d) is of one of the following types:
Type REG. It is regular.
Type CFL. It is context-free, but not regular.
Type DEC. It is Turing-decidable, but not context-free.
For each of the following languages, specify which type it is. Also, follow these instructions:

- If a language L is of Type REG, give a regular expression and a DFA (5-tuple) for L.
- If a language L is of Type CFL, give a context-free grammar (4-tuple) and a PDA (6-tuple) for L. Also, prove that L is not regular.
- If a language L is of Type DEC, give a description of a Turing machine that decides L. Also, prove that L is not context-free.
(a) $A=\left\{w \in \Sigma^{*} \mid w=\right.$ reverse (w) and
the length of w is divisible by 4$\}$, where $\Sigma=\{0,1\}$.
Answer: A is of type CFL.
A CFG $G=(V, \Sigma, R, S)$ for A has
- $V=\{S\}$,
- $\Sigma=\{0,1\}$,
- starting variable S,
\bullet rules $R=\{S \rightarrow 00 S 00|01 S 10| 10 S 01|11 S 11| \varepsilon\}$.

CS 341 Practice Final

PDA for $A=\left\{w \in \Sigma^{*}\left|w=w^{\mathcal{R}},|w|\right.\right.$ divisible by 4$\}:$

The above PDA has 6-tuple ($\left.Q, \Sigma, \Gamma, \delta, q_{1}, F\right)$, with $Q=\left\{q_{1}, q_{2}, \ldots, q_{6}\right\}, \Sigma=\{0,1\}, \Gamma=\{0,1, \$\}$, starting state $q_{1}, F=\left\{q_{1}, q_{6}\right\}$, and transition function $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \mathcal{P}\left(Q \times \Gamma_{\varepsilon}\right)$ defined by

Input:	0			1								
Stack:	0	1	$\$$	ε	0	1	$\$$	ε	0	1	$\$$	ε
q_{1}												$\left\{\left(q_{2}, \$\right)\right\}$
q_{2}				$\left\{\left(q_{3}, 0\right)\right\}$				$\left\{\left(q_{3}, 1\right)\right\}$				$\left\{\left(q_{4}, \varepsilon\right)\right\}$
q_{3}				$\left\{\left(q_{2}, 0\right)\right\}$				$\left\{\left(q_{2}, 1\right)\right\}$				
q_{4}	$\left\{\left(q_{5}, \varepsilon\right)\right\}$				$\left\{\left(q_{5}, \varepsilon\right)\right\}$				$\left\{\left(q_{6}, \varepsilon\right)\right\}$			
q_{5}	$\left\{\left(q_{4}, \varepsilon\right)\right\}$					$\left\{\left(q_{4}, \varepsilon\right)\right\}$						
q_{6}												

Blank entries are \emptyset.

Prove $A=\left\{w \in \Sigma^{*} \mid w=w^{\mathcal{R}}\right.$, length of w is divisible by 4$\}$ nonregular.

- For a contradiction, suppose that A is regular.
- Pumping Lemma (Theorem 1.I): If L is regular language, then \exists number p where, if $s \in L$ with $|s| \geq p$, then can split $s=x y z$ satisfying conditions
(1) $x y^{i} z \in L$ for each $i \geq 0$,
(2) $|y|>0$,
(3) $|x y| \leq p$
- Let $p \geq 1$ be the pumping length of the pumping lemma.
- Consider string $s=0^{p} 1^{2 p} 0^{p} \in A$, and note that $|s|=4 p>p$, so conclusions of pumping lemma must hold.
- Since all of the first p symbols of s are 0 s,
(3) implies that x and y must only consist of 0 s .

Also, z must consist of rest of 0 s at the beginning, followed by $1^{2 p} \mathrm{O}^{p}$.

- Hence, we can write $x=0^{j}, y=0^{k}, z=0^{m} 1^{2 p} 0^{p}$, where $j+k+m=p$ since $s=0^{p} 1^{2 p} 0^{p}=x y z=0^{j} 0^{k} 0^{m} 1^{2 p} 0^{p}$.
- Moreover, (2) implies that $k>0$.
- Finally, (1) states that xyyz must belong to A. However,

$$
x y y z=0^{j} 0^{k} 0^{k} 0^{m} 1^{2 p} 0^{p}=0^{p+k} 1^{2 p} 0^{p}
$$

since $j+k+m=p$.

- But, $k>0$ implies reverse $(x y y z) \neq x y y z$, which means $x y y z \notin A$, which contradicts (1).
- Therefore, A is a nonregular language.
(b) $B=\left\{b^{n} a^{n} b^{n} \mid n \geq 0\right\}$.

Answer: B is of type DEC.
Below is a description of a Turing machine that decides B.
$M=$ "On input string $w \in\{a, b\}^{*}$:

1. Scan input to check if it's in $b^{*} a^{*} b^{*}$; reject if not.
2. Return tape head to left-hand end of tape.
3. Repeat following until no more b 's left on tape.
4. Replace the leftmost b with x.
5. Scan right until a occurs. If no a 's, reject.
6. Replace the leftmost a with x.
7. Scan right until b occurs. If no b 's, reject.
8. Replace the leftmost (after the a 's) with x.
9. Return tape head to left end of tape; go to stage 3.
10. If tape contains any a 's, reject. Else, accept."

We now prove that B is not context-free by contradiction.

- Suppose that $B=\left\{b^{n} a^{n} b^{n} \mid n \geq 0\right\}$ is context-free.
- PL for CFL (Thm 2.D): For every CFL L, \exists pumping length p such that $\forall s \in L$ with $|s| \geq p$, can split $s=u v x y z$ with
(1) $u v^{i} x y^{i} z \in L \forall i \geq 0$,
(2) $|v y| \geq 1$,
(3) $|v x y| \leq p$.
- Let p be pumping length of CFL pumping lemma
- Consider string $s=b^{p} a^{p} b^{p} \in B$.

Note that $|s|=3 p>p$, so the pumping lemma will hold.

- Thus, can split $s=b^{p} a^{p} b^{p}=u v x y z=$ satisfying (1)-(3)
- We now consider all of the possible choices for v and y :
- Suppose strings v and y are both uniform
(e.g., $v=b^{j}$ for some $j \geq 0$, and $y=a^{k}$ for some $k \geq 0$).

Then $|v y| \geq 1$ implies that $v \neq \varepsilon$ or $y \neq \varepsilon$ (or both), so $u v^{2} x y^{2} z$ won't have the correct number of b 's at the beginning, a 's in the middle, and b 's at the end. Hence, $u v^{2} x y^{2} z \notin B$.

- Now suppose strings v and y are not both uniform.

Then $u v^{2} x y^{2} z$ won't have form $b \cdots b a \cdots a b \cdots b$, so $u v^{2} x y^{2} z \notin B$.

- Every case gives contradiction, so B is not a CFL.
(c) $C=\left\{w \in \Sigma^{*} \mid n_{a}(w) \bmod 4=1\right\}$, where $\Sigma=\{a, b\}$ and $n_{a}(w)$ is the number of a 's in string w. For example, $n_{a}(b a b a a b b)=3$. Also, $3 \bmod 4=3$, and $9 \bmod 4=1$.
Answer: C is of type REG.
A regular expression for C is

$$
\left(b^{*} a b^{*} a b^{*} a b^{*} a b^{*}\right)^{*} b^{*} a b^{*}
$$

$C=\left\{w \in \Sigma^{*} \mid n_{a}(w) \bmod 4=1\right\}$
DFA 5-tuple $\left(Q, \Sigma, \delta, q_{1}, F\right)$

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$
- $\Sigma=\{a, b\}$
- q_{1} is start state
- $F=\left\{q_{2}\right\}$
- transition fcn $\delta: Q \times \Sigma \rightarrow Q$

	a	b
q_{1}	q_{2}	q_{1}
q_{2}	q_{3}	q_{2}
q_{3}	q_{4}	q_{3}
q_{4}	q_{1}	q_{4}

$q_{3} q_{4} q_{3}$
$q_{4} q_{1} q_{4}$

(d) $D=\left\{b^{n} a^{n} b^{k} c^{k} \mid n \geq 0, k \geq 0\right\}$.
[Hint: Recall that the class of CFLs is closed under concatenation.]
Answer: D is of type CFL.
A CFG $G=(V, \Sigma, R, S)$ for D has

- $V=\{S, X, Y\}$
- $\Sigma=\{a, b, c\}$
- starting variable S
- Rules R :

$$
\begin{aligned}
& S \rightarrow X Y \\
& X \rightarrow b X a \mid \varepsilon \\
& Y \rightarrow b Y c \mid \varepsilon
\end{aligned}
$$

PDA for $D=\left\{b^{n} a^{n} b^{k} c^{k} \mid n \geq 0, k \geq 0\right\}:$

Important: q_{3} to q_{4} pops and pushes $\$$ to make sure stack is empty. PDA as a 6 -tuple $\left(Q, \Sigma, \Gamma, \delta, q_{1}, F\right)$, where
$Q=\left\{q_{1}, q_{2}, \ldots, q_{6}\right\}, \Sigma=\{a, b, c\}, \Gamma=\{b, \$\}$,
q_{1} is the start state, $F=\left\{q_{6}\right\}$, and the transition function $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \mathcal{P}\left(Q \times \Gamma_{\varepsilon}\right)$ is defined by

Input:	a			b			c			ε		
Stack:	b	d	ε	b	S	ε	b	\$	ε	b	\$	ε
q_{1}												$\left\{\left(q_{2}, \$\right)\right\}$
q_{2}						$\left\{\left(q_{2}, b\right)\right\}$						$\left\{\left(q_{3}, \varepsilon\right)\right\}$
q_{3}	\{ $\left.\left(q_{3}, \varepsilon\right)\right\}$										$\left\{\left(q_{4}, \$\right)\right\}$	
q_{4}						$\left\{\left(q_{4}, b\right)\right\}$						$\left\{\left(q_{5}, \varepsilon\right)\right\}$
q_{5}							$\left\{\left(q_{5}, \varepsilon\right)\right\}$				$\left\{\left(q_{6}, \varepsilon\right)\right\}$	
q_{6}												

Blank entries are \emptyset.
4. Each of the languages below in parts (a), (b), (c), (d) is of one of the following types:
Type DEC. It is Turing-decidable.
Type TMR. It is Turing-recognizable, but not decidable.
Type NTR. It is not Turing-recognizable.
For each of the following languages, specify which type it is. Also,
follow these instructions:

- If a language L is of Type DEC, give a description of a Turing machine that decides L.
- If a language L is of Type TMR, give a description of a Turing machine that recognizes L. Also, prove that L is not decidable.
- If a language L is of Type NTR, give a proof that it is not Turing-recognizable.

In each part below, if you need to prove that the given language L is decideable, undecidable, or not Turing-recognizable, you must give an explicit proof of this; i.e., do not just cite a theorem that establishes this without a proof. However, if in your proof you need to show another language L^{\prime} has a particular property for which there is a theorem that establishes this, then you may simply cite the theorem without proof.
(a) $\overline{A_{\text {TM }}}$, where $A_{\text {TM }}=\{\langle M, w\rangle \mid M$ is a TM that accepts string $w\}$. Answer: $\overline{A_{\text {TM }}}$ is of type NTR, which is just Theorem 4.M.
Proof:

- If $\overline{A_{\text {TM }}}$ were Turing-recognizable, then $A_{\text {TM }}$ would be both Turing-recognizable (see slide 4-25) and co-Turing-recognizable.
- But then Theorem 4.L would imply that $A_{\text {TM }}$ is decidable, which we know is not true by Theorem 4.I.
- Hence, $\overline{A_{T M}}$ is not Turing-recognizable.
(b) $E Q_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}, M_{2}\right.$ are TMs with $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$. [Hint: show $\overline{A_{\mathrm{TM}}} \leq_{\mathrm{m}} E Q_{\mathrm{TM}}$.]
Answer: $E Q_{\text {TM }}$ is of type NTR (see Theorem 5.K).
Prove by showing $\overline{A_{\text {TM }}} \leq_{\mathrm{m}} E Q_{\text {TM }}$ and applying Corollary 5.I.
- $\overline{A_{\text {TM }}} \subseteq \Omega_{1}=\{\langle M, w\rangle \mid M$ is a TM, w is a string $\}$, $E Q_{\text {тм }} \subseteq \Omega_{2}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}, M_{2}\right.$ are TMs $\}$.
- Define reducing function $f(\langle M, w\rangle)=\left\langle M_{1}, M_{2}\right\rangle$, where
- $M_{1}=$ "reject on all inputs."
- $M_{2}=$ "On input x :

1. Ignore input x, and run M on w.
2. If M accepts w, accept; if M rejects w, reject."

- $L\left(M_{1}\right)=\emptyset$.
- If M accepts w (i.e., $\langle M, w\rangle \notin \overline{A_{\text {TM }}}$), then $L\left(M_{2}\right)=\Sigma^{*}$. If M doesn't accept w (i.e., $\langle M, w\rangle \in \overline{A_{\text {TM }}}$), then $L\left(M_{2}\right)=\emptyset$.
- Thus, $\langle M, w\rangle \in \overline{A_{\text {TM }}} \Longleftrightarrow f(\langle M, w\rangle)=\left\langle M_{1}, M_{2}\right\rangle \in E Q_{\text {TM }}$, so $\overline{A_{\text {TM }}} \leq_{\mathrm{m}} E Q_{\text {тм }}$.
- But $\overline{A_{\text {TM }}}$ is not TM-recognizable (Corollary 4.M), so $E Q_{\text {TM }}$ is not TM-recognizable by Corollary 5.I.
(c) $H A L T_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM that halts on input $w\}$.
[Hint: modify universal TM to show $H A L T_{\mathrm{TM}}$ is TM-recognizable.]
Answer: $H A L T_{\text {TM }}$ is of type TMR (see Theorem 5.A).
- Decision problem: Given TM M and string w, does M halt on input w ?
- Universe: $\Omega_{H}=\{\langle M, w\rangle \mid$ TM M, string $w\}$.
- Consider following Turing machine T :
$T=$ "On input $\langle M, w\rangle \in \Omega_{H}$, where M is TM and w is string: 1. Run M on w.

2. If M halts (i.e., accepts or rejects) on w, accept."

- TM T recognizes $H A L T_{\text {TM }}$
- accepts each $\langle M, w\rangle \in H A L T_{\text {TM }}$
- loops on each $\langle M, w\rangle \notin H A L T_{\text {TM }}$

We now prove that $H A L T_{\mathrm{TM}}$ is undecidable, which is Theorem 5.A.

- We will show that $A_{\text {TM }}$ reduces to $H A L T_{\text {TM }}$, where
- $A_{\text {ТМ }} \subseteq \Omega_{A} \equiv\{\langle M, w\rangle \mid$ TM M, string $w\}$
- $H A L T_{\mathrm{TM}} \subseteq \Omega_{H} \equiv\{\langle M, w\rangle \mid$ TM M, string $w\}$.
- Suppose \exists TM R that decides $H A L T_{\text {TM }}$.
- Then could use R to build a TM S to decide $A_{\text {TM }}$ by modifying UTM to first use R to check if it's safe to run M on w.
$S=$ "On input $\langle M, w\rangle \in \Omega_{A}$, where M is TM and w is string: 1. Run R on input $\langle M, w\rangle$.

2. If R rejects, reject.
3. If R accepts, simulate M on input w until it halts.
4. If M accepts, accept; otherwise, reject."

- Since TM R is a decider, TM S always halts and decides $A_{\text {TM }}$.
- However, $A_{\text {TM }}$ is undecidable (Theorem 4.I), so that must mean that $H A L T_{\text {TM }}$ is also undecidable.
(d) $E Q_{\text {DFA }}=$ $\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}, M_{2}\right.$ are DFAs with $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$.
Answer: $E Q_{\text {DFA }}$ is of type DEC (see Theorem 4.E).
- Decision problem: For DFAs M_{1}, M_{2}, is $L\left(M_{1}\right)=L\left(M_{2}\right)$?
- Universe: $\Omega=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}, M_{2}\right.$ are DFAs $\}$.
- The following TM T decides $E Q_{\text {DFA }}$:
$T=$ "On input $\langle A, B\rangle \in \Omega$, where A and B are DFAs:

1. Check if $\langle A, B\rangle$ properly encodes 2 DFAs. If not, reject.
2. Construct DFA C such that

$$
L(C)=[L(A) \cap \overline{L(B)}] \cup[\overline{L(A)} \cap L(B)]
$$

using algorithms for DFA union, intersection and complementation.
3. Run TM that decides $E_{\text {DFA }}$ (Theorem 4.D) on $\langle C\rangle$.
4. If $\langle C\rangle \in E_{\mathrm{DFA}}$, accept; if $\langle C\rangle \notin E_{\mathrm{DFA}}$, reject."
5. - Let $L_{1}, L_{2}, L_{3}, \ldots$ be an infinite sequence of regular languages, each of which is defined over a common input alphabet Σ.

- Let $L=\cup_{k=1}^{\infty} L_{k}$ be the infinite union of $L_{1}, L_{2}, L_{3}, \ldots$.
- Is it always the case that L is a regular language?
- If your answer is YES, give a proof.
- If your answer is NO, give a counterexample.
- Explain your answer.
- Hint: Consider, for each $k \geq 1$, the language $L_{k}=\left\{a^{k} b^{k}\right\}$.

Answer: The answer is NO.

- For each $k \geq 1$, let $L_{k}=\left\{a^{k} b^{k}\right\}$, so L_{k} is a language consisting of just a single string $a^{k} b^{k}$.
- Since L_{k} is finite, it must be a regular language by Theorem 1.F.
- But $L=\cup_{k=1}^{\infty} L_{k}=\left\{a^{k} b^{k} \mid k \geq 1\right\}$, which we know is not regular (see end of Chapter 1).

6. Let L_{1}, L_{2}, and L_{3} be languages defined over the alphabet $\Sigma=\{a, b\}$, where

- L_{1} consists of all possible strings over Σ except the strings $w_{1}, w_{2}, \ldots, w_{100}$; i.e.,
- start with all possible strings over the alphabet
- take out 100 particular strings
- the remaining strings form the language L_{1};
- L_{2} is recognized by an NFA; and
- L_{3} is recognized by a PDA.

Prove that $\left(L_{1} \cap L_{2}\right) L_{3}$ is a context-free language.
[Hint: First show that L_{1} and L_{2} are regular.
Also, consider $\overline{L_{1}}$.]

Answer:

- $\overline{L_{1}}=\left\{w_{1}, w_{2}, \ldots, w_{100}\right\}$, so $\left|\overline{L_{1}}\right|=100$. Thus, $\overline{L_{1}}$ is a regular language since it is finite by Theorem 1.F.
- Then Theorem 1.H implies that the complement of $\overline{L_{1}}$ must be regular, but the complement of $\overline{L_{1}}$ is L_{1}. Thus, L_{1} is regular.
- Language L_{2} has an NFA, so it also has a DFA by Theorem 1.C. Therefore, L_{2} is regular.
- Since L_{1} and L_{2} are regular, $L_{1} \cap L_{2}$ must be regular by

Theorem 1.G. Theorem 2.B then implies that $L_{1} \cap L_{2}$ is CFL.

- Since L_{3} has a PDA, L_{3} is CFL by Theorem 2.C.
- Hence, since $L_{1} \cap L_{2}$ and L_{3} are both CFLs, their concatenation is CFL by Theorem 2.F.

7. Write Y or N in the entries of the table below to indicate which classes of languages are closed under which operations.

Operation	Regular languages	CFLs	Decidable languages	Turing-recognizable languages
Union				
Intersection				
Complementation				

Answer:

Op	Regular languages	CFLs	Decidable languages	Turing-recog languages
\cup	Y (Thm 1.A)	Y (Thm 2.E)	Y (HW 7, prob 2a)	Y (HW 7, prob 2b)
\cap	Y (Thm 1.G)	N (HW 6, prob 2a)	Y	Y
Compl.	Y (Thm 1.H)	N (HW 6, prob 2b)	Y (swap acc/rej)	N (e.g., $A_{\text {TM }}$)

8. Consider the following CFG G in Chomsky normal form:

$$
\begin{aligned}
S & \rightarrow a \mid Y Z \\
Z & \rightarrow Z Y \mid a \\
Y & \rightarrow b|Z Z| Y Y
\end{aligned}
$$

Use CYK (dynamic programming) algorithm to fill in following table to determine if G generates string babba. Does G generate babba?

G does not generate $b a b b a$ because S is not in $(1,5)$ entry

$$
\begin{aligned}
C L I Q U E & =\{\langle G, k\rangle \mid G \text { is undirected graph with } k \text {-clique }\} \\
& \subseteq\{\langle G, k\rangle \mid G \text { is undirected graph, integer } k\} \equiv \Omega_{C} \\
3 S A T & =\{\langle\phi\rangle \mid \phi \text { is satisfiable 3cnf-function }\} \\
& \subseteq\{\langle\phi\rangle \mid \phi \text { is 3cnf-function }\} \equiv \Omega_{3}
\end{aligned}
$$

- Show that CLIQUE is NP-Complete by showing that CLIQUE \in NP and $3 S A T \leq_{\mathrm{p}} C L I Q U E$.
- Be sure to prove your reduction works and that it takes polynomial time.
- Also, be sure to provide proofs of these results, and don't just cite a theorem.

Prove $3 S A T \leq_{m}$ CLIQUE
Proof Idea: Convert instance ϕ of $3 S A T$ problem with k clauses into instance $\langle G, k\rangle$ of clique problem.

- Reducing fcn $f: \Omega_{3} \rightarrow \Omega_{C}$
- $\langle\phi\rangle \in 3 S A T$ iff $f(\langle\phi\rangle)=\langle G, k\rangle \in C L I Q U E$
- Suppose ϕ is a 3 cnf-function with k clauses, e.g.,

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{3} \vee \overline{x_{5}} \vee x_{6}\right) \wedge\left(x_{3} \vee \overline{x_{6}} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{1} \vee x_{5}\right)
$$

- Convert ϕ into a graph G as follows:
- Nodes in G are organized into k triples $t_{1}, t_{2}, \ldots, t_{k}$.
- Triple t_{i} corresponds to the i th clause in ϕ.
- Each node in a triple corresponds to a literal within the clause.
- Add edges between each pair of nodes, except
- within same triple
Δ between contradictory literals, e.g., x_{1} and $\overline{x_{1}}$
- Prove $\langle\phi\rangle \in 3 S A T$ iff $\langle G, k\rangle \in C L I Q U E$.

Answer:

Prove CLIQUE $\in \mathrm{NP}$

- The clique is the certificate c.
- Here is a verifier for CLIQUE:

$$
V=" \text { On input }\langle\langle G, k\rangle, c\rangle:
$$

1. Test whether c is a set of k different nodes in G.
2. Test whether G contains all edges connecting nodes in c.
3. If both tests pass, accept; otherwise, reject."

- If graph G has m nodes, then (when G is encoded as list of nodes followed by list of edges)
- Stage 1 takes $O(k) O(m)=O(k m)$ time.
- Stage 2 takes $O\left(k^{2}\right) O\left(m^{2}\right)=O\left(k^{2} m^{2}\right)$ time.

$$
3 S A T \leq_{m} \text { CLIQUE }
$$

Example: 3cnf-function with $k=3$ clauses and $m=2$ variables:

$$
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

Corresponding Graph:

3SAT \leq_{m} CLIQUE

- 3cnf-formula with $k=3$ clauses and $m=2$ variables

$$
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

is satisfiable by assignment $x_{1}=0, x_{2}=1$.

- Corresponding graph has k-clique:

$$
\mathbf{I L P} \in \mathbf{N P}
$$

Proof.

- The certificate c is an integer vector satisfying $A c \leq b$.
- Here is a verifier for ILP:

$$
V=\text { "On input }\langle\langle A, b\rangle, c\rangle:
$$

1. Test whether c is a vector of all integers.
2. Test whether $A c \leq b$.
3. If both tests pass, accept; otherwise, reject."

- If $A y \leq b$ has m inequalities and n variables, then
- Stage 1 takes $O(n)$ time
- Stage 2 takes $O(m n)$ time
- So verifier V runs in $O(m n)$,
which is polynomial in size of problem instance.
Now prove ILP is NP-Hard by showing $3 S A T \leq_{\mathrm{p}} I L P$.

$$
3 S A T \leq_{m} \text { ILP }
$$

- Reductn $f: \Omega_{3} \rightarrow \Omega_{I},\langle\phi\rangle \in 3 S A T$ iff $f(\langle\phi\rangle)=\langle A, b\rangle \in I L P$.
- Consider 3cnf-formula with $m=4$ variables and $k=3$ clauses:

$$
\phi=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{4}} \vee \overline{x_{3}}\right)
$$

- Define integer linear program with
- $2 m=8$ variables $y_{1}, y_{1}^{\prime}, y_{2}, y_{2}^{\prime}, y_{3}, y_{3}^{\prime}, y_{4}, y_{4}^{\prime}$
^ y_{i} corresponds to x_{i}
- y_{i}^{\prime} corresponds to $\overline{x_{i}}$
- 3 sets of inequalities for each of pair y_{i}, y_{i}^{\prime} :

$0 \leq y_{1} \leq 1$,	$0 \leq y_{1}^{\prime} \leq 1$,	$y_{1}+y_{1}^{\prime}=1$
$0 \leq y_{2} \leq 1$,	$0 \leq y_{2}^{\prime} \leq 1$,	$y_{2}+y_{2}^{\prime}=1$
$0 \leq y_{3} \leq 1$,	$0 \leq y_{3}^{\prime} \leq 1$,	$y_{3}+y_{3}^{\prime}=1$
$0 \leq y_{4} \leq 1$,	$0 \leq y_{4}^{\prime} \leq 1$,	$y_{4}+y_{4}^{\prime}=1$

which guarantee that exactly one of y_{i} and y_{i}^{\prime} is 1 , and other is 0 .

- $0 \leq y_{i} \leq 1 \quad \Longleftrightarrow \quad-y_{i} \leq 0 \quad \& \quad y_{i} \leq 1$
- $y_{i}+y_{i}^{\prime}=1 \quad \Longleftrightarrow \quad y_{i}+y_{i}^{\prime} \leq 1 \quad \& \quad y_{i}+y_{i}^{\prime} \geq 1$

3SAT \leq_{m} ILP

- Recall 3cnf-formula with $m=4$ variables and $k=3$ clauses:

$$
\phi=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{4}} \vee \overline{x_{3}}\right)
$$

- ϕ satisfiable iff each clause evaluates to 1 .
- A clause evaluates to 1 iff at least one literal in the clause equals 1.
- For each clause $\left(x_{i} \vee \overline{x_{j}} \vee x_{\ell}\right)$, create inequality $y_{i}+y_{j}^{\prime}+y_{\ell} \geq 1$.
- For our example, ILP has inequalities

$$
\begin{aligned}
& y_{1}+y_{2}+y_{3}^{\prime} \geq 1 \\
& y_{1}^{\prime}+y_{2}^{\prime}+y_{4} \geq 1 \\
& y_{2}^{\prime}+y_{4}^{\prime}+y_{3}^{\prime} \geq 1
\end{aligned}
$$

which guarantee that each clause evaluates to 1 .

Reducing 3SAT to ILP Takes Polynomial Time

- Given 3cnf-formula:

$$
\phi=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{4}} \vee \overline{x_{3}}\right)
$$

- Constructed ILP:

$$
\begin{array}{ll}
0 \leq y_{1} \leq 1, & 0 \leq y_{1}^{\prime} \leq 1, \quad y_{1}+y_{1}^{\prime}=1 \\
0 \leq y_{2} \leq 1, & 0 \leq y_{2}^{\prime} \leq 1, \quad y_{2}+y_{2}^{\prime}=1 \\
0 \leq y_{3} \leq 1, \quad 0 \leq y_{3}^{\prime} \leq 1, \quad y_{3}+y_{3}^{\prime}=1 \\
0 \leq y_{4} \leq 1, \quad 0 \leq y_{4}^{\prime} \leq 1, \quad y_{4}+y_{4}^{\prime}=1 \\
& y_{1}+y_{2}+y_{3}^{\prime} \geq 1 \\
& y_{1}^{\prime}+y_{2}^{\prime}+y_{4} \geq 1 \\
& y_{2}^{\prime}+y_{4}^{\prime}+y_{3}^{\prime} \geq 1
\end{array}
$$

- Note that:
ϕ satisfiable \Longleftrightarrow constructed ILP has solution
(with values of variables $\in\{0,1\}$)

