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1. Short answers:

(a) Define the following terms and concepts:

i. Union, intersection, set concatenation, Kleene-star, set
subtraction, complement

Answer:

• Union: S ∪ T = { x | x ∈ S or x ∈ T}

• Intersection: S ∩ T = {x | x ∈ S and x ∈ T}

• Concatenation: S ◦ T = {xy | x ∈ S, y ∈ T}

• Kleene-star:
S∗ = {w1w2 · · ·wk | k ≥ 0, wi ∈ S ∀ i = 1,2, . . . , k}

• Subtraction: S − T = { x | x ∈ S, x 	∈ T}

• Complement: S = {x ∈ Ω | x 	∈ S} = Ω− S,
where Ω is the universe of all elements under consideration.

ii. A set S is closed under an operation f

Answer: S is closed under f if applying f to members of S
always returns a member of S.
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iii. Regular language

Answer: A regular language is defined by a DFA.

iv. Kleene’s theorem

Answer: A language is regular if and only if it has a regular
expression.

v. Context-free language

Answer: A CFL is defined by a context-free grammar (CFG).

vi. Chomsky normal form

Answer: A CFG is in Chomsky normal form if each of its rules
has one of 3 forms:

A → BC, A → x, or S → ε,

where A,B,C are variables, B and C are not the start variable,
x is a terminal, and S is the start variable.
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vii. Church-Turing Thesis

Answer: The informal notion of algorithm corresponds exactly to
a Turing machine that always halts (i.e., a decider).

viii. Turing-decidable language

Answer: A language A that is decided by a Turing machine;
i.e., there is a Turing machine M such that

•M halts and accepts on any input w ∈ A, and

•M halts and rejects on input input w 	∈ A.

Looping cannot happen.

ix. Turing-recognizable language

Answer: A language A that is recognized by a Turing machine;
i.e., there is a Turing machine M such that

•M halts and accepts on any input w ∈ A, and

•M rejects or loops on any input w 	∈ A.
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x. co-Turing-recognizable language

Answer: A language whose complement is Turing-recognizable.

xi. Countable and uncountable sets

Answer:

• A set S is countable if it is finite or we can define a
correspondence between the positive integers and S.

• In other words, can create (possibly infinite) list of all elements
in S and each specific element will eventually appear in list.

• An uncountable set is a set that is not countable.

• A common approach to prove a set is uncountable is by using a
diagonalization argument.
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xii. Language A is mapping reducible to language B, A ≤m B

Answer:

• Suppose A is a language defined over alphabet Σ1,
and B is a language defined over alphabet Σ2.

• Then A ≤m B means there is a computable function
f : Σ∗

1 → Σ∗
2 such that w ∈ A iff f(w) ∈ B.

Ω  = Σ
∗

1
Ω  = Σ

∗
2

A B

f

f

1 2

w ∈ A ⇐⇒ f(w) ∈ B

YES instance for problem A ⇐⇒ YES instance for problem B
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xiii. Function f(n) is O(g(n))

Answer: There exist constants c and n0 such that
|f(n)| ≤ c · g(n) for all n ≥ n0.

xiv. Classes P and NP

Answer:

• P is the class of languages that can be decided by a
deterministic Turing machine in polynomial time.

• NP is the class of languages that can be verified in
(deterministic) polynomial time.

• Equivalently, NP is the class of languages that can be decided by
a nondeterministic Turing machine in polynomial time.
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xv. Language A is polynomial-time mapping reducible to language B,
A ≤P B.

Answer:

• Suppose A is a language defined over alphabet Σ1,
and B is a language defined over alphabet Σ2.

• Then A ≤P B means ∃ polynomial-time computable function
f : Σ∗

1 → Σ∗
2 such that w ∈ A iff f(w) ∈ B.

Ω  = Σ
∗

1
Ω  = Σ

∗
2

A B

f

f

1 2

w ∈ A ⇐⇒ f(w) ∈ B

YES instance for problem A ⇐⇒ YES instance for problem B
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xvi. NP-complete

Answer: Language B is NP-Complete if B ∈ NP,
and B is NP-Hard (∀ A ∈ NP, we have A ≤P B).

A1

A2

A3 A4

A5

B

NP

C

Typical approach for proving language C is NP-Complete:

• first show C ∈ NP

• then show a known NP-Complete language B satisfies B ≤P C.

xvii. NP-hard

Answer: Lang B is NP-hard if A ≤P B for every lang A ∈ NP.
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(b) Give the transition functions δ (i.e., give domain and range) of a
DFA, NFA, PDA, Turing machine and nondeterministic Turing
machine.

Answer:

• DFA, δ : Q×Σ → Q,
where Q is the set of states and Σ is the alphabet.

q1 q2 q3

a

b

b

a

a, b

• NFA, δ : Q×Σε → P(Q),
where Σε = Σ ∪ {ε} and P(Q) is the power set of Q

q1 q2 q3 q4

0,1

1 0, ε 1 0,1
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• PDA, δ : Q×Σε × Γε → P(Q× Γε),
where Γ is the stack alphabet and Γε = Γ ∪ {ε}.

qi qj

read, pop → push

a, b → c

Stack

$

d

b

Before

$

d

c

After

• Turing machine, δ : Q× Γ → Q× Γ× {L,R},
where Γ is the tape alphabet, L means move tape head one cell
left, and R means move tape head one cell right.

q s
a → b, L

read → write, move

Tape

a b a a �� ��Before

a b b a �� ��After
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• Nondeterministic Turing machine,
δ : Q× Γ → P(Q× Γ× {L,R})

qi

qj

qk

q�

c → a, L

c → c, R

c → d, R

c → a, L

Multiple choices when in state qi and read c from tape:

δ(qi, c) = { (qj, a, L), (qk, c, R), (q�, a, L), (q�, d, R) }
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(c) Explain the “P vs. NP” problem.

Answer:

• P is class of languages that can be solved in deterministic poly
time.

• NP is class of languages that can be verified in deterministic poly
time (equivalently, solved by poly-time NTM).

•We know that P ⊆ NP.

Each poly-time DTM is also a poly-time NTM.

• But it is currently unknown if P = NP or P 	= NP.

P

NP

or P = NP
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2. Recall that ATM = { 〈M,w〉 | M is a TM that accepts string w }.

(a) Prove that ATM is undecidable. You may not cite any theorems or
corollaries in your proof.

Overview of Proof:

• Suppose ATM is decided by some TM H, taking input
〈M,w〉 ∈ Ω = { 〈M,w〉 | M is a TM and w a string }.

H−→〈M,w〉 �
�
�
��

�
�
�
��

accept, if 〈M,w〉 ∈ ATM

reject, if 〈M,w〉 	∈ ATM

• Define another TM D using H as a subroutine.

HH

D

−→〈M, 〈M〉〉 �
�
�
��

�
�
�
��

accept

reject
−→〈M〉

�
�
�
�
�
�
�
����

�
�
�
�
�
�
���

accept

reject

•What happens when we run D with input 〈D〉 ?

D accepts 〈D〉 iff D doesn’t accept 〈D〉, which is impossible.
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Detailed Proof:

• Suppose there exists a TM H that decides ATM.

• Consider language
L = { 〈M〉 | M is a TM that does not accept 〈M〉 }.

• Now construct a TM D for L using TM H as a subroutine:

D = “On input 〈M〉, where M is a TM:

1. Run H on input 〈M, 〈M〉〉.

2. If H accepts, reject. If H rejects, accept .”

• If we run TM D on input 〈D〉, then D accepts 〈D〉 if and only if
D doesn’t accept 〈D〉.

• Since this is impossible, TM H must not exist.

CS 341 Practice Final 16

(b) Show that ATM is Turing-recognizable.

Answer: Universal TM (UTM) U recognizes ATM:

U = “On input 〈M,w〉 ∈ Ω, where M is a TM and w is a string:

1. Run M on w.

2. If M accepts w, accept ; if M rejects w, reject.”

U recognizes ATM but does not decide ATM

•When we run M on w, there is the possibility that M neither
accepts nor rejects w but rather loops on w.
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3. Each of the languages below in parts (a), (b), (c), (d) is of one of the
following types:

Type REG. It is regular.
Type CFL. It is context-free, but not regular.
Type DEC. It is Turing-decidable, but not context-free.

For each of the following languages, specify which type it is. Also,
follow these instructions:

• If a language L is of Type REG, give a regular expression and

a DFA (5-tuple) for L.

• If a language L is of Type CFL, give a context-free grammar
(4-tuple) and a PDA (6-tuple) for L. Also, prove that L is not

regular.

• If a language L is of Type DEC, give a description of a Turing
machine that decides L. Also, prove that L is not context-free.
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(a) A = {w ∈ Σ∗ | w = reverse(w) and
the length of w is divisible by 4 }, where Σ = {0,1}.

Answer: A is of type CFL.

A CFG G = (V,Σ, R, S) for A has

• V = {S},

• Σ = {0,1},

• starting variable S,

• rules R = {S → 00S00 | 01S10 | 10S01 | 11S11 | ε }.
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PDA for A = {w ∈ Σ∗ | w = wR, |w| divisible by 4 }:

q1 q2

q3

q4

q5

q6
ε, ε → $

0, ε → 0
1, ε → 1

0, ε → 0
1, ε → 1

ε, ε → ε

0, 0 → ε

1, 1 → ε

0, 0 → ε

1, 1 → ε

ε, $ → ε

The above PDA has 6-tuple (Q,Σ,Γ, δ, q1, F), with
Q = {q1, q2, . . . , q6}, Σ = {0,1}, Γ = {0,1,$},
starting state q1, F = {q1, q6}, and transition function
δ : Q×Σε × Γε → P(Q× Γε) defined by

Input: 0 1 ε

Stack: 0 1 $ ε 0 1 $ ε 0 1 $ ε

q1 { (q2,$) }

q2 { (q3,0) } { (q3,1) } { (q4, ε) }

q3 { (q2,0) } { (q2,1) }

q4 { (q5, ε) } { (q5, ε) } {(q6, ε)}

q5 { (q4, ε) } { (q4, ε) }

q6

Blank entries are ∅.
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Prove A = {w ∈ Σ∗ | w = wR, length of w is divisible by 4 } nonregular.

• For a contradiction, suppose that A is regular.

• Pumping Lemma (Theorem 1.I): If L is regular language, then ∃ number p
where, if s ∈ L with |s| ≥ p, then can split s = xyz satisfying conditions
(1) xyiz ∈ L for each i ≥ 0, (2) |y| > 0, (3) |xy| ≤ p

• Let p ≥ 1 be the pumping length of the pumping lemma.

• Consider string s = 0p 12p 0p ∈ A, and note that |s| = 4p > p, so
conclusions of pumping lemma must hold.

• Since all of the first p symbols of s are 0s,
(3) implies that x and y must only consist of 0s.
Also, z must consist of rest of 0s at the beginning, followed by 12p0p.

• Hence, we can write x = 0j, y = 0k, z = 0m 12p 0p, where j + k+m = p

since s = 0p12p0p = xyz = 0j 0k 0m 12p 0p.

• Moreover, (2) implies that k > 0.

• Finally, (1) states that xyyz must belong to A. However,

xyyz = 0j 0k 0k 0m 12p 0p = 0p+k 12p 0p

since j + k +m = p.

• But, k > 0 implies reverse(xyyz) 	= xyyz, which means xyyz 	∈ A, which
contradicts (1).

• Therefore, A is a nonregular language.
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(b)B = { bnanbn | n ≥ 0 }.

Answer: B is of type DEC.
Below is a description of a Turing machine that decides B.

M = “On input string w ∈ {a, b}∗:

1. Scan input to check if it’s in b∗a∗b∗; reject if not.

2. Return tape head to left-hand end of tape.

3. Repeat following until no more b’s left on tape.

4. Replace the leftmost b with x.

5. Scan right until a occurs. If no a’s, reject.

6. Replace the leftmost a with x.

7. Scan right until b occurs. If no b’s, reject.

8. Replace the leftmost b (after the a’s) with x.

9. Return tape head to left end of tape; go to stage 3.

10. If tape contains any a’s, reject. Else, accept.”

We now prove that B is not context-free by contradiction.
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• Suppose that B = { bnanbn | n ≥ 0 } is context-free.

• PL for CFL (Thm 2.D): For every CFL L, ∃ pumping length p

such that ∀ s ∈ L with |s| ≥ p, can split s = uvxyz with
(1) uvixyiz ∈ L ∀i ≥ 0, (2) |vy| ≥ 1, (3) |vxy| ≤ p.

• Let p be pumping length of CFL pumping lemma

• Consider string s = bpapbp ∈ B.
Note that |s| = 3p > p, so the pumping lemma will hold.

• Thus, can split s = bpapbp = uvxyz = satisfying (1)–(3)

•We now consider all of the possible choices for v and y:

Suppose strings v and y are both uniform

(e.g., v = bj for some j ≥ 0, and y = ak for some k ≥ 0).
Then |vy| ≥ 1 implies that v 	= ε or y 	= ε (or both), so
uv2xy2z won’t have the correct number of b’s at the beginning,
a’s in the middle, and b’s at the end. Hence, uv2xy2z 	∈ B.

Now suppose strings v and y are not both uniform.
Then uv2xy2z won’t have form b · · · ba · · · ab · · · b, so
uv2xy2z 	∈ B.

• Every case gives contradiction, so B is not a CFL.
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(c) C = {w ∈ Σ∗ | na(w) mod 4 = 1 }, where Σ = {a, b} and
na(w) is the number of a’s in string w. For example,
na(babaabb) = 3. Also, 3 mod 4 = 3, and 9 mod 4 = 1.

Answer: C is of type REG.

A regular expression for C is

(b∗ab∗ab∗ab∗ab∗)∗b∗ab∗

CS 341 Practice Final 24

q1 q2

q3q4

a

b

a

b

a

b

a

b

C = {w ∈ Σ∗ | na(w) mod 4 = 1 }

DFA 5-tuple (Q,Σ, δ, q1, F)

• Q = {q1, q2, q3, q4}

• Σ = {a, b}

• q1 is start state

• F = {q2}

• transition fcn δ : Q×Σ → Q

a b

q1 q2 q1
q2 q3 q2
q3 q4 q3
q4 q1 q4
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(d)D = { bnanbkck | n ≥ 0, k ≥ 0 }.
[Hint: Recall that the class of CFLs is closed under concatenation.]

Answer: D is of type CFL.

A CFG G = (V,Σ, R, S) for D has

• V = {S,X, Y }

• Σ = {a, b, c}

• starting variable S

• Rules R:

S → XY

X → bXa | ε

Y → bY c | ε
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PDA for D = { bnanbkck | n ≥ 0, k ≥ 0 }:

q1 q2 q3 q4 q5 q6
ε, ε → $ ε, ε → ε

b, ε → b a, b → ε

ε, $ → $

b, ε → b

ε, ε → ε

c, b → ε

ε, $ → ε

Important: q3 to q4 pops and pushes $ to make sure stack is empty.

PDA as a 6-tuple (Q,Σ,Γ, δ, q1, F), where
Q = {q1, q2, . . . , q6}, Σ = {a, b, c}, Γ = {b,$},
q1 is the start state, F = {q6}, and the transition function
δ : Q×Σε × Γε → P(Q× Γε) is defined by

Input: a b c ε

Stack: b $ ε b $ ε b $ ε b $ ε

q1 { (q2,$) }

q2 { (q2, b) } { (q3, ε) }

q3 { (q3, ε) } { (q4,$) }

q4 { (q4, b) } { (q5, ε) }

q5 { (q5, ε) } { (q6, ε) }

q6

Blank entries are ∅.
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Prove D = { bnanbkck | n ≥ 0, k ≥ 0 } not regular.

• Suppose that D is regular. Let p ≥ 1 be pumping length of
pumping lemma (Theorem 1.I).

• Consider string s = bp ap bp cp ∈ D, and note that
|s| = 4p > p, so conclusions of pumping lemma must hold.

• Thus, can split s = xyz satisfying
(1) xyiz ∈ D for all i ≥ 0, (2) |y| > 0, (3) |xy| ≤ p.

• Since all of the first p symbols of s are b’s,
(3) implies that x and y must consist of only b’s.
Also, z is rest of b’s at beginning, followed by ap bp cp.

• Hence, we can write x = bj, y = bk, z = bm ap bp cp, where
j + k +m = p since
s = bp ap bp cp = xyz = bj bk bm ap bp cp.

•Moreover, (2) implies that k > 0.

• Finally, (1) states that xyyz must belong to D, but

xyyz = bj bk bk bm ap bp cp = bp+k ap bp cp

since j + k +m = p. Also k > 0, so xyyz 	∈ D, which
contradicts (1). Therefore, D is a nonregular language.
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4. Each of the languages below in parts (a), (b), (c), (d) is of one of the
following types:

Type DEC. It is Turing-decidable.
Type TMR. It is Turing-recognizable, but not decidable.
Type NTR. It is not Turing-recognizable.

For each of the following languages, specify which type it is. Also,
follow these instructions:

• If a language L is of Type DEC, give a description of a Turing
machine that decides L.

• If a language L is of Type TMR, give a description of a Turing
machine that recognizes L. Also, prove that L is not decidable.

• If a language L is of Type NTR, give a proof that it is not
Turing-recognizable.



CS 341 Practice Final 29

In each part below, if you need to prove that the given language L is
decideable, undecidable, or not Turing-recognizable, you must give an
explicit proof of this; i.e., do not just cite a theorem that establishes this
without a proof. However, if in your proof you need to show another
language L′ has a particular property for which there is a theorem that
establishes this, then you may simply cite the theorem without proof.

(a) ATM, where ATM = { 〈M,w〉 | M is a TM that accepts string w }.

Answer: ATM is of type NTR, which is just Theorem 4.M.

Proof:

• If ATM were Turing-recognizable, then ATM would be both
Turing-recognizable (see slide 4-25) and co-Turing-recognizable.

• But then Theorem 4.L would imply that ATM is decidable, which
we know is not true by Theorem 4.I.

• Hence, ATM is not Turing-recognizable.
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(b) EQTM = { 〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2) }.

[Hint: show ATM ≤m EQTM.]

Answer: EQTM is of type NTR (see Theorem 5.K).
Prove by showing ATM ≤m EQTM and applying Corollary 5.I.

• ATM ⊆ Ω1 = { 〈M,w〉 | M is a TM, w is a string },
EQTM ⊆ Ω2 = { 〈M1,M2〉 | M1,M2 are TMs }.

• Define reducing function f(〈M,w〉) = 〈M1,M2〉, where

M1 = “reject on all inputs.”

M2 = “On input x:
1. Ignore input x, and run M on w.
2. If M accepts w, accept ; if M rejects w, reject.”

• L(M1) = ∅.

• If M accepts w (i.e., 〈M,w〉 	∈ ATM), then L(M2) = Σ∗.
If M doesn’t accept w (i.e., 〈M,w〉 ∈ ATM), then L(M2) = ∅.

• Thus, 〈M,w〉 ∈ ATM ⇐⇒ f(〈M,w〉) = 〈M1,M2〉 ∈ EQTM,

so ATM ≤m EQTM.

• But ATM is not TM-recognizable (Corollary 4.M),
so EQTM is not TM-recognizable by Corollary 5.I.
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(c)HALTTM = { 〈M,w〉 | M is a TM that halts on input w }.
[Hint: modify universal TM to show HALTTM is TM-recognizable.]

Answer: HALTTM is of type TMR (see Theorem 5.A).

• Decision problem: Given TM M and string w, does M halt

on input w?

• Universe: ΩH = { 〈M,w〉 | TM M , string w }.

• Consider following Turing machine T :

T = “On input 〈M,w〉 ∈ ΩH , where M is TM and w is string:

1. Run M on w.

2. If M halts (i.e., accepts or rejects) on w, accept .”

• TM T recognizes HALTTM

accepts each 〈M,w〉 ∈ HALTTM

loops on each 〈M,w〉 	∈ HALTTM
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We now prove that HALTTM is undecidable, which is Theorem 5.A.

•We will show that ATM reduces to HALTTM, where

ATM ⊆ ΩA ≡ { 〈M,w〉 | TM M , string w }

HALTTM ⊆ ΩH ≡ { 〈M,w〉 | TM M , string w }.

• Suppose ∃ TM R that decides HALTTM.

• Then could use R to build a TM S to decide ATM by modifying
UTM to first use R to check if it’s safe to run M on w.

S = “On input 〈M,w〉 ∈ ΩA, where M is TM and w is string:

1. Run R on input 〈M,w〉.

2. If R rejects, reject.

3. If R accepts, simulate M on input w until it halts.

4. If M accepts, accept ; otherwise, reject.”

• Since TM R is a decider, TM S always halts and decides ATM.

• However, ATM is undecidable (Theorem 4.I),
so that must mean that HALTTM is also undecidable.
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(d) EQDFA =

{ 〈M1,M2〉 | M1,M2 are DFAs with L(M1) = L(M2) }.

Answer: EQDFA is of type DEC (see Theorem 4.E).

• Decision problem: For DFAs M1, M2, is L(M1) = L(M2)?

• Universe: Ω = { 〈M1,M2〉 | M1,M2 are DFAs }.

• The following TM T decides EQDFA:

T = “On input 〈A,B〉 ∈ Ω, where A and B are DFAs:

1. Check if 〈A,B〉 properly encodes 2 DFAs. If not, reject.

2. Construct DFA C such that

L(C) = [L(A) ∩ L(B)] ∪ [L(A) ∩ L(B)]

using algorithms for DFA union, intersection

and complementation.

3. Run TM that decides EDFA (Theorem 4.D) on 〈C〉.

4. If 〈C〉 ∈ EDFA, accept ; if 〈C〉 	∈ EDFA, reject.”
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5. • Let L1, L2, L3, . . . be an infinite sequence of regular languages,
each of which is defined over a common input alphabet Σ.

• Let L = ∪∞
k=1Lk be the infinite union of L1, L2, L3, . . ..

• Is it always the case that L is a regular language?

• If your answer is YES, give a proof.

• If your answer is NO, give a counterexample.

• Explain your answer.

• Hint: Consider, for each k ≥ 1, the language Lk = {akbk}.
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Answer: The answer is NO.

• For each k ≥ 1, let Lk = {akbk}, so Lk is a language consisting of
just a single string akbk.

• Since Lk is finite, it must be a regular language by Theorem 1.F.

• But L = ∪∞
k=1Lk = { akbk | k ≥ 1 }, which we know is not

regular (see end of Chapter 1).
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6. Let L1, L2, and L3 be languages defined over the alphabet
Σ = {a, b}, where

• L1 consists of all possible strings over Σ except the strings
w1, w2, . . . , w100; i.e.,

start with all possible strings over the alphabet

take out 100 particular strings

the remaining strings form the language L1;

• L2 is recognized by an NFA; and

• L3 is recognized by a PDA.

Prove that (L1 ∩ L2)L3 is a context-free language.

[Hint: First show that L1 and L2 are regular.
Also, consider L1.]
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Answer:

• L1 = {w1, w2, . . . , w100}, so |L1| = 100. Thus, L1 is a regular
language since it is finite by Theorem 1.F.

• Then Theorem 1.H implies that the complement of L1 must be
regular, but the complement of L1 is L1. Thus, L1 is regular.

• Language L2 has an NFA, so it also has a DFA by Theorem 1.C.
Therefore, L2 is regular.

• Since L1 and L2 are regular, L1 ∩ L2 must be regular by
Theorem 1.G. Theorem 2.B then implies that L1 ∩ L2 is CFL.

• Since L3 has a PDA, L3 is CFL by Theorem 2.C.

• Hence, since L1 ∩ L2 and L3 are both CFLs, their concatenation is
CFL by Theorem 2.F.
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7. Write Y or N in the entries of the table below to indicate which classes
of languages are closed under which operations.

Regular Decidable Turing-recognizable
Operation languages CFLs languages languages

Union
Intersection

Complementation

Answer:

Regular Decidable Turing-recog
Op languages CFLs languages languages

∪ Y (Thm 1.A) Y (Thm 2.E) Y (HW 7, prob 2a) Y (HW 7, prob 2b)
∩ Y (Thm 1.G) N (HW 6, prob 2a) Y Y

Compl. Y (Thm 1.H) N (HW 6, prob 2b) Y (swap acc/rej) N (e.g., ATM)
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8. Consider the following CFG G in Chomsky normal form:

S → a | Y Z

Z → ZY | a

Y → b | ZZ | Y Y

Use CYK (dynamic programming) algorithm to fill in following table to
determine if G generates string babba. Does G generate babba?
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S → a | Y Z

Z → ZY | a

Y → b | ZZ | Y Y

1 2 3 4 5

1 Y S S S Y

2 S, Z Z Z Y

3 Y Y S

4 Y S

5 S,Z

b a b b a

G does not generate babba because S is not in (1,5) entry
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9. Recall that

CLIQUE = { 〈G, k〉 | G is undirected graph with k-clique },

⊆ { 〈G, k〉 | G is undirected graph, integer k } ≡ ΩC,

3SAT = { 〈φ〉 | φ is satisfiable 3cnf-function }

⊆ { 〈φ〉 | φ is 3cnf-function } ≡ Ω3.

• Show that CLIQUE is NP-Complete by showing that CLIQUE ∈ NP

and 3SAT ≤P CLIQUE .

• Be sure to prove your reduction works
and that it takes polynomial time.

• Also, be sure to provide proofs of these results,
and don’t just cite a theorem.

1

2

3

4

5

6

7
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Answer:

Prove CLIQUE ∈ NP

• The clique is the certificate c.

• Here is a verifier for CLIQUE :

V = “On input 〈〈G, k〉, c〉:

1. Test whether c is a set of k different nodes in G.

2. Test whether G contains all edges connecting nodes in c.

3. If both tests pass, accept ; otherwise, reject.”

• If graph G has m nodes, then (when G is encoded as list of nodes
followed by list of edges)

Stage 1 takes O(k)O(m) = O(km) time.

Stage 2 takes O(k2)O(m2) = O(k2m2) time.
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Prove 3SAT ≤m CLIQUE

Proof Idea: Convert instance φ of 3SAT problem with k clauses into
instance 〈G, k〉 of clique problem.

• Reducing fcn f : Ω3 → ΩC

〈φ〉 ∈ 3SAT iff f(〈φ〉) = 〈G, k〉 ∈ CLIQUE

• Suppose φ is a 3cnf-function with k clauses, e.g.,

φ = (x1∨x2∨x3)∧(x3∨x5∨x6)∧(x3∨x6∨x4)∧(x2∨x1∨x5)

• Convert φ into a graph G as follows:

Nodes in G are organized into k triples t1, t2, . . . , tk.

Triple ti corresponds to the ith clause in φ.

Each node in a triple corresponds to a literal within the clause.

Add edges between each pair of nodes, except

� within same triple

� between contradictory literals, e.g., x1 and x1

• Prove 〈φ〉 ∈ 3SAT iff 〈G, k〉 ∈ CLIQUE .
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3SAT ≤m CLIQUE

Example: 3cnf-function with k = 3 clauses and m = 2 variables:

φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Corresponding Graph:

Clause 1

x1

x1

x2

Clause 2

x1 x2 x2

Clause 3

x1

x2

x2
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3SAT ≤m CLIQUE

• 3cnf-formula with k = 3 clauses and m = 2 variables

φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

is satisfiable by assignment x1 = 0, x2 = 1.

• Corresponding graph has k-clique:

Clause 1

x1

x1

x2

Clause 2

x1 x2 x2

Clause 3

x1

x2

x2
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Claim: 〈φ〉 ∈ 3SAT iff 〈G, k〉 ∈ CLIQUE .

Proof. Use that G has edges between every pair of nodes except for

• pairs in same triple

• contradictory literals.

Also, φ satisfiable iff each clause has ≥ 1 true literal.

Claim: The mapping φ → 〈G, k〉 is polynomial-time computable.

Proof.

• Given 3cnf-function φ with

k clauses

m variables.

• Constructing graph G

G has 3k nodes

Adding edges entails considering each pair of nodes in G:(
3k

2

)
=

3k(3k − 1)

2
= O(k2)

Time to construct G is polynomial in size of 3cnf-function φ.
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10. Recall that

ILP = { 〈A, b〉 | matrix A and vector b satisfy Ay ≤ b

with y an integer vector }

⊆ { 〈A, b〉 | matrix A and vector b } ≡ ΩI

• Show that ILP is NP-Complete by showing that ILP ∈ NP and
3SAT ≤P ILP .

• Be sure to prove your reduction works
and that it takes polynomial time.

• Also, be sure to provide proofs of these results,
and don’t just cite a theorem.

a11 y1 + a12 y2 + · · · + a1n yn ≤ b1
a21 y1 + a22 y2 + · · · + a2n yn ≤ b2

... ... . . . ... ...
am1 y1 + am2 y2 + · · · + amn yn ≤ bm
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ILP ∈ NP

Proof.

• The certificate c is an integer vector satisfying Ac ≤ b.

• Here is a verifier for ILP :

V = “On input 〈〈A, b〉, c〉:

1. Test whether c is a vector of all integers.

2. Test whether Ac ≤ b.

3. If both tests pass, accept ; otherwise, reject.”

• If Ay ≤ b has m inequalities and n variables, then

Stage 1 takes O(n) time

Stage 2 takes O(mn) time

So verifier V runs in O(mn),
which is polynomial in size of problem instance.

Now prove ILP is NP-Hard by showing 3SAT ≤P ILP .
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3SAT ≤m ILP

• Reductn f : Ω3 → ΩI , 〈φ〉 ∈ 3SAT iff f(〈φ〉) = 〈A, b〉 ∈ ILP .

• Consider 3cnf-formula with m = 4 variables and k = 3 clauses:

φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x4 ∨ x3)

• Define integer linear program with

2m = 8 variables y1, y
′
1, y2, y

′
2, y3, y

′
3, y4, y

′
4

� yi corresponds to xi

� y′i corresponds to xi

3 sets of inequalities for each of pair yi, y
′
i:

0 ≤ y1 ≤ 1, 0 ≤ y′1 ≤ 1, y1 + y′1 = 1

0 ≤ y2 ≤ 1, 0 ≤ y′2 ≤ 1, y2 + y′2 = 1

0 ≤ y3 ≤ 1, 0 ≤ y′3 ≤ 1, y3 + y′3 = 1

0 ≤ y4 ≤ 1, 0 ≤ y′4 ≤ 1, y4 + y′4 = 1

which guarantee that exactly one of yi and y′i is 1, and other is 0.

0 ≤ yi ≤ 1 ⇐⇒ −yi ≤ 0 & yi ≤ 1

yi + y′i = 1 ⇐⇒ yi + y′i ≤ 1 & yi + y′i ≥ 1
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3SAT ≤m ILP

• Recall 3cnf-formula with m = 4 variables and k = 3 clauses:

φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x4 ∨ x3)

φ satisfiable iff each clause evaluates to 1.

A clause evaluates to 1 iff at least one literal in the clause equals 1.

For each clause (xi ∨ xj ∨ x�), create inequality
yi + y′j + y� ≥ 1.

For our example, ILP has inequalities

y1 + y2 + y′3 ≥ 1

y′1 + y′2 + y4 ≥ 1

y′2 + y′4 + y′3 ≥ 1

which guarantee that each clause evaluates to 1.
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3SAT ≤m ILP

• Given 3cnf-formula:

φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x4 ∨ x3)

• Constructed ILP:

0 ≤ y1 ≤ 1, 0 ≤ y′1 ≤ 1, y1 + y′1 = 1

0 ≤ y2 ≤ 1, 0 ≤ y′2 ≤ 1, y2 + y′2 = 1

0 ≤ y3 ≤ 1, 0 ≤ y′3 ≤ 1, y3 + y′3 = 1

0 ≤ y4 ≤ 1, 0 ≤ y′4 ≤ 1, y4 + y′4 = 1

y1 + y2 + y′3 ≥ 1

y′1 + y′2 + y4 ≥ 1

y′2 + y′4 + y′3 ≥ 1

• Note that:

φ satisfiable ⇐⇒ constructed ILP has solution

(with values of variables ∈ {0,1})
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Reducing 3SAT to ILP Takes Polynomial Time

• Given 3cnf-formula φ with

m variables: x1, x2, . . . , xm
k clauses

• Constructed ILP has

2m variables: y1, y
′
1, y2, y

′
2, . . . , ym, y′m

6m+ k inequalities:

� 3 sets of inequalities for each pair yi, y
′
i:

0 ≤ yi ≤ 1, 0 ≤ y′i ≤ 1, yi + y′i = 1,

so total of 6m inequalities of this type.

� For each clause in φ, ILP has corresponding inequality, e.g.,

(x1 ∨ x2 ∨ x3) ←→ y1 + y2 + y′3 ≥ 1,

so total of k inequalities of this type.

• Thus, size of ILP is polynomial in m and k.


