CS 341 Practice Final

Marvin K. Nakayama Computer Science Dept., NJIT

CS 341 Practice Final

iii. Regular language

Answer: A regular language is defined by a DFA.

iv. Kleene's theorem

Answer: A language is regular if and only if it has a regular expression.

v. Context-free language

Answer: A CFL is defined by a context-free grammar (CFG).

vi. Chomsky normal form

Answer: A CFG is in Chomsky normal form if each of its rules has one of 3 forms:

$$A \to BC$$
, $A \to x$, or $S \to \varepsilon$,

where A,B,C are variables, B and C are not the start variable, x is a terminal, and S is the start variable.

CS 341 Practice Final

1. Short answers:

(a) Define the following terms and concepts:

i. Union, intersection, set concatenation, Kleene-star, set subtraction, complement

Answer:

• Union: $S \cup T = \{ x \mid x \in S \text{ or } x \in T \}$

• Intersection: $S \cap T = \{ x \mid x \in S \text{ and } x \in T \}$

• Concatenation: $S \circ T = \{ xy \mid x \in S, y \in T \}$

• Kleene-star:

$$S^* = \{ w_1 w_2 \cdots w_k \mid k \ge 0, w_i \in S \ \forall \ i = 1, 2, \dots, k \}$$

• Subtraction: $S - T = \{ x \mid x \in S, x \notin T \}$

• Complement: $\overline{S} = \{ x \in \Omega \mid x \notin S \} = \Omega - S$, where Ω is the universe of all elements under consideration.

ii. A set S is closed under an operation f

Answer: S is closed under f if applying f to members of S always returns a member of S.

CS 341 Practice Final

3

vii. Church-Turing Thesis

Answer: The informal notion of algorithm corresponds exactly to a Turing machine that always halts (i.e., a decider).

viii. Turing-decidable language

Answer: A language A that is **decided** by a Turing machine; i.e., there is a Turing machine M such that

ullet M halts and accepts on any input $w\in A$, and

• M halts and rejects on input input $w \not\in A$.

Looping cannot happen.

ix. Turing-recognizable language

Answer: A language A that is **recognized** by a Turing machine; i.e., there is a Turing machine M such that

- \bullet M halts and accepts on any input $w \in A$, and
- ullet M rejects **or loops** on any input $w \not\in A$.

7

x. co-Turing-recognizable language

Answer: A language whose **complement** is Turing-recognizable.

xi. Countable and uncountable sets

Answer:

- ullet A set S is countable if it is finite or we can define a correspondence between the positive integers and S.
- In other words, can create (possibly infinite) list of all elements in S and each specific element will eventually appear in list.
- An uncountable set is a set that is not countable.
- A common approach to prove a set is uncountable is by using a diagonalization argument.

xii. Language A is mapping reducible to language B, $A \leq_m B$

Answer:

- Suppose A is a language defined over alphabet Σ_1 , and B is a language defined over alphabet Σ_2 .
- Then $A \leq_{\mathsf{m}} B$ means there is a computable function $f: \Sigma_1^* \to \Sigma_2^*$ such that $w \in A$ iff $f(w) \in B$.

 $w \in A \iff f(w) \in B$

YES instance for problem $A \iff$ YES instance for problem B

CS 341 Practice Final

xiii. Function f(n) is O(g(n))

Answer: There exist constants c and n_0 such that $|f(n)| \le c \cdot g(n)$ for all $n \ge n_0$.

xiv. Classes P and NP

Answer:

- P is the class of languages that can be decided by a **deterministic** Turing machine in polynomial time.
- NP is the class of languages that can be verified in (deterministic) polynomial time.
- Equivalently, NP is the class of languages that can be decided by a **nondeterministic** Turing machine in polynomial time.

CS 341 Practice Final

xv. Language A is polynomial-time mapping reducible to language B, $A \leq_{\mathsf{P}} B.$

Answer:

- Suppose A is a language defined over alphabet Σ_1 , and B is a language defined over alphabet Σ_2 .
- Then $A \leq_{\mathsf{P}} B$ means \exists polynomial-time computable function $f: \Sigma_1^* \to \Sigma_2^*$ such that $w \in A$ iff $f(w) \in B$.

 $w \in A \iff f(w) \in B$

YES instance for problem $A \iff YES$ instance for problem B

11

12

xvi. NP-complete

Answer: Language B is NP-Complete if $B \in NP$, and B is NP-Hard ($\forall A \in NP$, we have $A \leq_P B$).

Typical approach for proving language C is NP-Complete:

- ullet first show $C\in {
 m NP}$
- then show a known NP-Complete language B satisfies $B \leq_{\mathsf{P}} C$.

xvii. NP-hard

Answer: Lang B is NP-hard if $A \leq_{P} B$ for every lang $A \in NP$.

(b) Give the transition functions δ (i.e., give domain and range) of a DFA, NFA, PDA, Turing machine and nondeterministic Turing machine.

Answer:

ullet DFA, $\delta:Q imes\Sigma o Q$, where Q is the set of states and Σ is the alphabet.

• NFA, $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$, where $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ and $\mathcal{P}(Q)$ is the power set of Q

CS 341 Practice Final

• PDA, $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$, where Γ is the stack alphabet and $\Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}$.

Stack

 $\begin{bmatrix} b \\ d \\ \$ \end{bmatrix}$

Before After

• Turing machine, $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$, where Γ is the tape alphabet, L means move tape head one cell left, and R means move tape head one cell right.

Tape

Before $a b a a \Box \Box$ After $a b b a \Box \Box$

CS 341 Practice FinalNondeterministic Turing machine.

$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

Multiple choices when in state q_i and read c from tape:

$$\delta(q_i, c) = \{ (q_i, a, L), (q_k, c, R), (q_\ell, a, L), (q_\ell, d, R) \}$$

(c) Explain the "P vs. NP" problem.

Answer:

- P is class of languages that can be solved in deterministic poly time.
- NP is class of languages that can be verified in deterministic poly time (equivalently, solved by poly-time NTM).
- We know that $P \subseteq NP$.
- Each poly-time DTM is also a poly-time NTM.
- But it is currently unknown if P = NP or $P \neq NP$.

15

Detailed Proof:

CS 341 Practice Final

- Suppose there exists a TM H that decides A_{TM} .
- Consider language $L = \{ \langle M \rangle \mid M \text{ is a TM that does not accept } \langle M \rangle \}.$
- ullet Now construct a TM D for L using TM H as a subroutine:

D = "On input $\langle M \rangle$, where M is a TM:

- 1. Run H on input $\langle M, \langle M \rangle \rangle$.
- 2. If H accepts, reject. If H rejects, accept."
- If we run TM D on input $\langle D \rangle$, then D accepts $\langle D \rangle$ if and only if D doesn't accept $\langle D \rangle$.
- \bullet Since this is impossible, TM H must not exist.

2. Recall that $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}.$

(a) Prove that A_{TM} is undecidable. You may not cite any theorems or corollaries in your proof.

Overview of Proof:

• Suppose A_{TM} is decided by some TM H, taking input $\langle M, w \rangle \in \Omega = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \text{ a string } \}.$

$$\langle M,w\rangle \longrightarrow H \qquad \overbrace{\qquad \qquad } accept, \text{ if } \langle M,w\rangle \in A_{\mathsf{TM}}$$

$$reject, \text{ if } \langle M,w\rangle \not\in A_{\mathsf{TM}}$$

 \bullet Define another TM D using H as a subroutine.

- What happens when we run D with input $\langle D \rangle$?
 - D accepts $\langle D \rangle$ iff D doesn't accept $\langle D \rangle$, which is impossible.

(b) Show that A_{TM} is Turing-recognizable.

CS 341 Practice Final

Answer: Universal TM (UTM) U recognizes A_{TM} :

U = "On input $\langle M, w \rangle \in \Omega$, where M is a TM and w is a string:

- 1. Run M on w.
- 2. If M accepts w, accept; if M rejects w, reject."

U recognizes A_{TM} but does not decide A_{TM}

ullet When we run M on w, there is the possibility that M neither accepts nor rejects w but rather loops on w.

3. Each of the languages below in parts (a), (b), (c), (d) is of one of the following types:

Type REG. It is regular.

Type CFL. It is context-free, but not regular.

Type DEC. It is Turing-decidable, but not context-free.

For each of the following languages, specify which type it is. Also, follow these instructions:

- \bullet If a language L is of Type REG, give a regular expression and a DFA (5-tuple) for L.
- \bullet If a language L is of Type CFL, give a context-free grammar (4-tuple) and a PDA (6-tuple) for L. Also, prove that L is not regular.
- \bullet If a language L is of Type DEC, give a description of a Turing machine that decides L. Also, prove that L is not context-free.

(a) $A = \{ w \in \Sigma^* \mid w = \text{reverse}(w) \text{ and } \}$ the length of w is divisible by 4}, where $\Sigma = \{0, 1\}$.

Answer: A is of type CFL.

A CFG $G = (V, \Sigma, R, S)$ for A has

- $V = \{S\},$
- $\Sigma = \{0, 1\},$
- \bullet starting variable S,
- rules $R = \{ S \rightarrow 00S00 \mid 01S10 \mid 10S01 \mid 11S11 \mid \varepsilon \}.$

CS 341 Practice Final

PDA for $A = \{ w \in \Sigma^* \mid w = w^{\mathcal{R}}, |w| \text{ divisible by 4} \}$:

The above PDA has 6-tuple $(Q, \Sigma, \Gamma, \delta, q_1, F)$, with $Q = \{q_1, q_2, \dots, q_6\}, \Sigma = \{0, 1\}, \Gamma = \{0, 1, \$\},$ starting state q_1 , $F = \{q_1, q_6\}$, and transition function $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ defined by

Input:		()		1				ε			
Stack:	0	1	\$	ε	0	1	\$	ε	0	1	\$	ε
q_1												$\{(q_2,\$)\}$
q_2				$\{(q_3,0)\}$				$\{(q_3,1)\}$				$\{(q_4,\varepsilon)\}$
q_3				$\{(q_2,0)\}$				$\{(q_2,1)\}$				
q_4	$\{(q_5,\varepsilon)\}$					$\{(q_5,\varepsilon)\}$					$\{(q_6,\varepsilon)\}$	
q_5	$\{(q_4,\varepsilon)\}$					$\{(q_4,\varepsilon)\}$						
q_6												

Blank entries are \emptyset .

CS 341 Practice Final

19

Prove $A = \{ w \in \Sigma^* \mid w = w^{\mathcal{R}}, \text{ length of } w \text{ is divisible by 4} \}$ nonregular.

 \bullet For a contradiction, suppose that A is regular.

ullet Pumping Lemma (Theorem 1.1): If L is regular language, then \exists number p

where, if $s \in L$ with |s| > p, then can split s = xyz satisfying conditions

(1) $xy^iz \in L$ for each $i \ge 0$, (2) |y| > 0, (3) $|xy| \le p$

- \bullet Let $p \ge 1$ be the pumping length of the pumping lemma.
- Consider string $s = 0^p \ 1^{2p} \ 0^p \in A$, and note that |s| = 4p > p, so conclusions of pumping lemma must hold.
- Since all of the first p symbols of s are Os, (3) implies that x and y must only consist of Os. Also, z must consist of rest of 0s at the beginning, followed by $1^{2p}0^p$.
- \bullet Hence, we can write $x=0^j$, $y=0^k$, $z=0^m\ 1^{2p}\ 0^p$, where j+k+m=psince $s = 0^p 1^{2p} 0^p = xyz = 0^j 0^k 0^m 1^{2p} 0^p$.
- Moreover, (2) implies that k > 0.
- Finally, (1) states that xyyz must belong to A. However,

$$xyyz = 0^j 0^k 0^k 0^m 1^{2p} 0^p = 0^{p+k} 1^{2p} 0^p$$

since j + k + m = p.

- But, k > 0 implies reverse $(xyyz) \neq xyyz$, which means $xyyz \notin A$, which contradicts (1).
- Therefore, A is a nonregular language.

24

(b) $B = \{ b^n a^n b^n \mid n \ge 0 \}.$

Answer: B is of type DEC.

Below is a description of a Turing machine that decides ${\cal B}.$

 $M = \text{ "On input string } w \in \{a,b\}^*:$

- 1. Scan input to check if it's in $b^*a^*b^*$; reject if not.
- 2. Return tape head to left-hand end of tape.
- **3.** Repeat following until no more b's left on tape.
- **4.** Replace the leftmost b with x.
- **5.** Scan right until a occurs. If no a's, reject.
- **6.** Replace the leftmost a with x.
- **7.** Scan right until b occurs. If no b's, reject.
- **8.** Replace the leftmost b (after the a's) with x.
- **9.** Return tape head to left end of tape; go to stage 3.
- **10.** If tape contains any a's, reject. Else, accept."

We now prove that \boldsymbol{B} is not context-free by contradiction.

- Suppose that $B = \{b^n a^n b^n \mid n \ge 0\}$ is context-free.
- PL for CFL (Thm 2.D): For every CFL L, \exists pumping length p such that $\forall s \in L$ with $|s| \geq p$, can split s = uvxyz with (1) $uv^ixy^iz \in L \ \forall i \geq 0$, (2) $|vy| \geq 1$, (3) $|vxy| \leq p$.
- ullet Let p be pumping length of CFL pumping lemma
- ullet Consider string $s=b^pa^pb^p\in B.$ Note that |s|=3p>p, so the pumping lemma will hold.
- Thus, can split $s = b^p a^p b^p = uvxyz = \text{satisfying (1)-(3)}$
- \bullet We now consider all of the possible choices for v and y:
 - Suppose strings v and y are **both uniform** (e.g., $v=b^j$ for some $j\geq 0$, and $y=a^k$ for some $k\geq 0$). Then $|vy|\geq 1$ implies that $v\neq \varepsilon$ or $y\neq \varepsilon$ (or both), so uv^2xy^2z won't have the correct number of b's at the beginning, a's in the middle, and b's at the end. Hence, $uv^2xy^2z\not\in B$.
 - Now suppose strings v and y are **not both uniform**. Then uv^2xy^2z won't have form $b\cdots ba\cdots ab\cdots b$, so $uv^2xy^2z\not\in B$.
- \bullet Every case gives contradiction, so B is not a CFL.

CS 341 Practice Final

(c) $C=\{w\in \Sigma^*\mid n_a(w)\mod 4=1\}$, where $\Sigma=\{a,b\}$ and $n_a(w)$ is the number of a's in string w. For example, $n_a(babaabb)=3$. Also, 3 $\mod 4=3$, and 9 $\mod 4=1$.

Answer: C is of type REG.

A regular expression for C is

$$(b^*ab^*ab^*ab^*ab^*)^*b^*ab^*$$

CS 341 Practice Final

$$C = \{ w \in \Sigma^* | n_a(w) \mod 4 = 1 \}$$

DFA 5-tuple $(Q, \Sigma, \delta, q_1, F)$

- $\bullet Q = \{q_1, q_2, q_3, q_4\}$
- $\bullet \Sigma = \{a, b\}$
- \bullet q_1 is start state
- $F = \{q_2\}$
- ullet transition fcn $\delta:Q imes\Sigma o Q$

$$\begin{array}{c|cccc} & a & b \\ \hline q_1 & q_2 & q_1 \\ q_2 & q_3 & q_2 \\ q_3 & q_4 & q_3 \\ q_4 & q_1 & q_4 \end{array}$$

28

(d) $D = \{ b^n a^n b^k c^k \mid n \ge 0, k \ge 0 \}.$

[Hint: Recall that the class of CFLs is closed under concatenation.]

Answer: D is of type CFL.

A CFG $G = (V, \Sigma, R, S)$ for D has

- $\bullet V = \{S, X, Y\}$
- $\bullet \Sigma = \{a, b, c\}$
- ullet starting variable S
- \bullet Rules R:

$$\begin{array}{l} S \to XY \\ X \to bXa \mid \varepsilon \\ Y \to bYc \mid \varepsilon \end{array}$$

PDA for $D = \{ b^n a^n b^k c^k | n \ge 0, k \ge 0 \}$:

Important: q_3 to q_4 pops and pushes \$ to make sure stack is empty. PDA as a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_1, F)$, where $Q = \{q_1, q_2, \ldots, q_6\}$, $\Sigma = \{a, b, c\}$, $\Gamma = \{b, \$\}$, q_1 is the start state, $F = \{q_6\}$, and the transition function $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is defined by

Input:	a b			c			ε				
Stack:	b	\$	ε	b	\$ ε	b	\$	ε	b	\$	ε
q_1											$\{(q_2,\$)\}$
q_2					$\{(q_2,b)\}$						$\{(q_3,\varepsilon)\}$
q_3	$\{(q_3,\varepsilon)\}$									$\{(q_4,\$)\}$	
q_4					$\{(q_4,b)\}$						$\{(q_5,\varepsilon)\}$
q_5						$\{(q_5,\varepsilon)\}$				$\{(q_6,\varepsilon)\}$	
<i>q</i> 6			1	_							

Blank entries are \emptyset .

CS 341 Practice Final

Prove $D = \{b^n a^n b^k c^k \mid n \ge 0, k \ge 0\}$ not regular.

- Suppose that D is regular. Let $p \ge 1$ be pumping length of pumping lemma (Theorem 1.I).
- Consider string $s = b^p \ a^p \ b^p \ c^p \in D$, and note that |s| = 4p > p, so conclusions of pumping lemma must hold.
- Thus, can split s=xyz satisfying (1) $xy^iz \in D$ for all $i \geq 0$, (2) |y| > 0, (3) $|xy| \leq p$.
- Since all of the first p symbols of s are b's,
 (3) implies that x and y must consist of only b's.
 Also, z is rest of b's at beginning, followed by a^p b^p c^p.
- Hence, we can write $x=b^j$, $y=b^k$, $z=b^m\ a^p\ b^p\ c^p$, where j+k+m=p since $s=b^p\ a^p\ b^p\ c^p=xyz=b^j\ b^k\ b^m\ a^p\ b^p\ c^p.$
- Moreover, (2) implies that k > 0.
- Finally, (1) states that xyyz must belong to D, but $xyyz = b^j b^k b^k b^m a^p b^p c^p = b^{p+k} a^p b^p c^p$ since j + k + m = p. Also k > 0, so $xyyz \notin D$, which contradicts (1). Therefore, D is a nonregular language.

CS 341 Practice Final

4. Each of the languages below in parts (a), (b), (c), (d) is of one of the following types:

Type DEC. It is Turing-decidable.

Type TMR. It is Turing-recognizable, but not decidable.

Type NTR. It is not Turing-recognizable.

For each of the following languages, specify which type it is. Also, follow these instructions:

- ullet If a language L is of Type DEC, give a description of a Turing machine that decides L.
- If a language L is of Type TMR, give a description of a Turing machine that recognizes L. **Also, prove that** L **is not decidable.**
- ullet If a language L is of Type NTR, give a proof that it is not Turing-recognizable.

31

32

In each part below, if you need to prove that the given language L is decideable, undecidable, or not Turing-recognizable, you must give an explicit proof of this; i.e., do not just cite a theorem that establishes this without a proof. However, if in your proof you need to show another language L' has a particular property for which there is a theorem that establishes this, then you may simply cite the theorem without proof.

- (a) $\overline{A_{\rm TM}}$, where $A_{\rm TM}=\{\,\langle M,w\rangle\,|\,M$ is a TM that accepts string $w\,\}$. Answer: $\overline{A_{\rm TM}}$ is of type NTR, which is just Theorem 4.M. Proof:
 - If $\overline{A_{\mathsf{TM}}}$ were Turing-recognizable, then A_{TM} would be both Turing-recognizable (see slide 4-25) and co-Turing-recognizable.
 - ullet But then Theorem 4.L would imply that A_{TM} is decidable, which we know is not true by Theorem 4.I.
 - Hence, $\overline{A_{\mathsf{TM}}}$ is not Turing-recognizable.

CS 341 Practice Final

(c) $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}.$ [Hint: modify universal TM to show $HALT_{\mathsf{TM}}$ is TM-recognizable.]

Answer: $HALT_{TM}$ is of type TMR (see Theorem 5.A).

- **Decision problem:** Given TM M and string w, does M halt on input w?
- Universe: $\Omega_H = \{ \langle M, w \rangle \mid \mathsf{TM} \ M, \mathsf{string} \ w \}.$
- \bullet Consider following Turing machine T:

T = "On input $\langle M, w \rangle \in \Omega_H$, where M is TM and w is string:

- 1. Run M on w.
- 2. If M halts (i.e., accepts or rejects) on w, accept."
- TM T recognizes $HALT_{TM}$
 - lacktriangle accepts each $\langle M,w \rangle \in HALT_{\mathsf{TM}}$
 - lacksquare loops on each $\langle M,w \rangle
 ot\in HALT_{\mathsf{TM}}$

(b) $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs with } L(M_1) = L(M_2) \}.$ [Hint: show $\overline{A_{\mathsf{TM}}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}.$]

Answer: EQ_{TM} is of type NTR (see Theorem 5.K). Prove by showing $\overline{A_{\mathsf{TM}}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}$ and applying Corollary 5.I.

- $$\begin{split} \bullet \ \overline{A_{\mathsf{TM}}} &\subseteq \Omega_1 = \{ \, \langle M, w \rangle \mid M \text{ is a TM, } w \text{ is a string} \, \}, \\ EQ_{\mathsf{TM}} &\subseteq \Omega_2 = \{ \, \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs} \, \}. \end{split}$$
- Define reducing function $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle$, where
 - $M_1 = "reject \text{ on all inputs."}$
 - M_2 = "On input x:
 - 1. Ignore input x, and run M on w.
 - 2. If M accepts w, accept; if M rejects w, reject."
- $\bullet L(M_1) = \emptyset.$
- If M accepts w (i.e., $\langle M, w \rangle \notin \overline{A_{\mathsf{TM}}}$), then $L(M_2) = \Sigma^*$. If M doesn't accept w (i.e., $\langle M, w \rangle \in \overline{A_{\mathsf{TM}}}$), then $L(M_2) = \emptyset$.
- Thus, $\langle M, w \rangle \in \overline{A_{\mathsf{TM}}} \iff f(\langle M, w \rangle) = \langle M_1, M_2 \rangle \in EQ_{\mathsf{TM}},$ so $\overline{A_{\mathsf{TM}}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}.$
- But $\overline{A_{\mathsf{TM}}}$ is not TM-recognizable (Corollary 4.M), so EQ_{TM} is not TM-recognizable by Corollary 5.I.

CS 341 Practice Final

We now prove that $HALT_{\mathsf{TM}}$ is undecidable, which is Theorem 5.A.

- ullet We will show that A_{TM} reduces to $HALT_{\mathsf{TM}}$, where
 - $\blacksquare A_{\mathsf{TM}} \subseteq \Omega_A \equiv \{ \langle M, w \rangle \mid \mathsf{TM} \ M, \mathsf{string} \ w \}$
 - $HALT_{\mathsf{TM}} \subseteq \Omega_H \equiv \{ \langle M, w \rangle \mid \mathsf{TM} \ M, \mathsf{string} \ w \}.$
- Suppose $\exists \mathsf{TM} \; R$ that decides $HALT_{\mathsf{TM}}$.
- ullet Then could use R to build a TM S to decide A_{TM} by modifying UTM to first use R to check if it's safe to run M on w.

S= "On input $\langle M,w \rangle \in \Omega_A$, where M is TM and w is string:

- 1. Run R on input $\langle M, w \rangle$.
- 2. If R rejects, reject.
- 3. If R accepts, simulate M on input w until it halts.
- 4. If *M* accepts, *accept*; otherwise, *reject*."
- ullet Since TM R is a decider, TM S always halts and decides A_{TM} .
- However, A_{TM} is undecidable (Theorem 4.I), so that must mean that $HALT_{\mathsf{TM}}$ is also undecidable.

(d) $EQ_{\mathrm{DFA}}=$ $\{\langle M_1,M_2\rangle \mid M_1,M_2 \text{ are DFAs with } L(M_1)=L(M_2)\}.$

Answer: EQ_{DFA} is of type DEC (see Theorem 4.E).

- **Decision problem:** For DFAs M_1 , M_2 , is $L(M_1) = L(M_2)$?
- Universe: $\Omega = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are DFAs } \}.$
- ullet The following TM T decides EQ_{DFA} :

T= "On input $\langle A,B\rangle\in\Omega$, where A and B are DFAs:

- 1. Check if $\langle A, B \rangle$ properly encodes 2 DFAs. If not, reject.
- 2. Construct DFA C such that $L(C) = [L(A) \cap \overline{L(B)}] \cup [\overline{L(A)} \cap L(B)]$ using algorithms for DFA union, intersection and complementation.
- 3. Run TM that decides E_{DFA} (Theorem 4.D) on $\langle C \rangle$.
- 4. If $\langle C \rangle \in E_{DFA}$, accept; if $\langle C \rangle \not\in E_{DFA}$, reject."

- 5. Let L_1, L_2, L_3, \ldots be an infinite sequence of regular languages, each of which is defined over a common input alphabet Σ .
 - Let $L = \bigcup_{k=1}^{\infty} L_k$ be the infinite union of L_1, L_2, L_3, \ldots
 - ullet Is it always the case that L is a regular language?
 - If your answer is YES, give a proof.
 - If your answer is NO, give a counterexample.
 - Explain your answer.
 - Hint: Consider, for each $k \ge 1$, the language $L_k = \{a^k b^k\}$.

CS 341 Practice Final

Answer: The answer is NO.

- ullet For each $k\geq 1$, let $L_k=\{a^kb^k\}$, so L_k is a language consisting of just a single string a^kb^k .
- ullet Since L_k is finite, it must be a regular language by Theorem 1.F.
- But $L = \bigcup_{k=1}^{\infty} L_k = \{ a^k b^k \mid k \ge 1 \}$, which we know is not regular (see end of Chapter 1).

CS 341 Practice Final

35

- 6. Let L_1 , L_2 , and L_3 be languages defined over the alphabet $\Sigma = \{a, b\}$, where
 - L_1 consists of all possible strings over Σ except the strings $w_1, w_2, \ldots, w_{100}$; i.e.,
 - start with all possible strings over the alphabet
 - take out 100 particular strings
 - \blacksquare the remaining strings form the language L_1 ;
 - L_2 is recognized by an NFA; and
 - L_3 is recognized by a PDA.

Prove that $(L_1 \cap L_2)L_3$ is a context-free language.

[Hint: First show that L_1 and L_2 are regular. Also, consider $\overline{L_1}$.]

Answer:

• $\overline{L_1} = \{w_1, w_2, \dots, w_{100}\}$, so $|\overline{L_1}| = 100$. Thus, $\overline{L_1}$ is a regular language since it is finite by Theorem 1.F.

ullet Then Theorem 1.H implies that the complement of $\overline{L_1}$ must be regular, but the complement of $\overline{L_1}$ is L_1 . Thus, L_1 is regular.

ullet Language L_2 has an NFA, so it also has a DFA by Theorem 1.C. Therefore, L_2 is regular.

• Since L_1 and L_2 are regular, $L_1 \cap L_2$ must be regular by Theorem 1.G. Theorem 2.B then implies that $L_1 \cap L_2$ is CFL.

• Since L_3 has a PDA, L_3 is CFL by Theorem 2.C.

ullet Hence, since $L_1\cap L_2$ and L_3 are both CFLs, their concatenation is CFL by Theorem 2.F.

7. Write Y or N in the entries of the table below to indicate which classes of languages are closed under which operations.

	Regular		Decidable	Turing-recognizable
Operation	languages	CFLs	languages	languages
Union				
Intersection				
Complementation				

Answer:

39

	Regular		Decidable	Turing-recog
Ор	languages	CFLs	languages	languages
U	Y (Thm 1.A)	Y (Thm 2.E)	Y (HW 7, prob 2a)	Y (HW 7, prob 2b)
\cap		N (HW 6, prob 2a)	Y	Υ
Compl.	Y (Thm 1.H)	N (HW 6, prob 2b)	Y (swap acc/rej)	N (e.g., A_{TM})

CS 341 Practice Final

8. Consider the following CFG G in Chomsky normal form:

$$S \to a \mid YZ$$

$$Z \to ZY \mid a$$

$$Y \to b \mid ZZ \mid YY$$

Use CYK (dynamic programming) algorithm to fill in following table to determine if G generates string babba. Does G generate babba?

CS 341 Practice Final

$$S \rightarrow a \mid YZ$$

$$Z \rightarrow ZY \mid a$$

$$Y \rightarrow b \mid ZZ \mid YY$$

	1	2	3	4	5
1	Y	S	S	S	Y
2		S, Z	Z	Z	Y
3			Y	Y	S
4				Y	S
5					S, Z
	b	a	b	b	a

 ${\cal G}$ does not generate babba because ${\cal S}$ is not in (1,5) entry

9. Recall that

$$\begin{array}{l} \textit{CLIQUE} \ = \ \{ \ \langle G,k \rangle \ | \ G \ \text{is undirected graph with k-clique} \ \}, \\ \ \subseteq \ \{ \ \langle G,k \rangle \ | \ G \ \text{is undirected graph, integer} \ k \ \} \ \equiv \ \Omega_C, \\ \textit{3SAT} \ = \ \{ \ \langle \phi \rangle \ | \ \phi \ \text{is satisfiable} \ \text{3cnf-function} \ \} \\ \ \subseteq \ \{ \ \langle \phi \rangle \ | \ \phi \ \text{is 3cnf-function} \ \} \ \equiv \ \Omega_3. \\ \end{array}$$

- Show that *CLIQUE* is NP-Complete by showing that *CLIQUE* \in NP and *3SAT* \leq_P *CLIQUE*.
- Be sure to prove your reduction works and that it takes polynomial time.
- Also, be sure to provide proofs of these results, and don't just cite a theorem.

Answer:

Prove $CLIQUE \in NP$

- ullet The clique is the certificate c.
- Here is a verifier for *CLIQUE*:

$$V =$$
 "On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a set of k different nodes in G.
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both tests pass, *accept*; otherwise, *reject*."
- ullet If graph G has m nodes, then (when G is encoded as list of nodes followed by list of edges)
- Stage 1 takes O(k)O(m) = O(km) time.
- Stage 2 takes $O(k^2)O(m^2) = O(k^2m^2)$ time.

CS 341 Practice Final

Prove $3SAT <_m CLIQUE$

Proof Idea: Convert instance ϕ of *3SAT* problem with k clauses into instance $\langle G, k \rangle$ of clique problem.

- Reducing fcn $f: \Omega_3 \to \Omega_C$
 - \bullet $\langle \phi \rangle \in 3SAT \text{ iff } f(\langle \phi \rangle) = \langle G, k \rangle \in CLIQUE$
- Suppose ϕ is a 3cnf-function with k clauses, e.g.,

$$\phi = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4) \wedge (x_2 \vee x_1 \vee x_5)$$

- \bullet Convert ϕ into a graph G as follows:
 - Nodes in G are organized into k triples t_1, t_2, \ldots, t_k .
- Triple t_i corresponds to the *i*th clause in ϕ .
- Each node in a triple corresponds to a literal within the clause.
- Add edges between each pair of nodes, except
 - ▲ within same triple
- \blacktriangle between contradictory literals, e.g., x_1 and $\overline{x_1}$
- ullet Prove $\langle \phi \rangle \in \mathit{3SAT}$ iff $\langle G, k \rangle \in \mathit{CLIQUE}$.

CS 341 Practice Final

43

3SAT < m CLIQUE

Example: 3cnf-function with k=3 clauses and m=2 variables:

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

Corresponding Graph:

47

48

3SAT <_m CLIQUE

 \bullet 3cnf-formula with k=3 clauses and m=2 variables

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

is satisfiable by assignment $x_1 = 0$, $x_2 = 1$.

• Corresponding graph has k-clique:

CS 341 Practice Final

10. Recall that

 $ILP = \{ \langle A, b \rangle \mid \text{matrix } A \text{ and vector } b \text{ satisfy } Ay \leq b \}$ with y an **integer** vector $\}$ $\subseteq \{ \langle A, b \rangle \mid \text{matrix } A \text{ and vector } b \} \equiv \Omega_I$

- Show that ILP is NP-Complete by showing that $ILP \in NP$ and $3SAT \leq_{\mathsf{P}} ILP$.
- Be sure to prove your reduction works and that it takes polynomial time.
- Also, be sure to provide proofs of these results, and don't just cite a theorem.

Claim: $\langle \phi \rangle \in 3SAT$ iff $\langle G, k \rangle \in CLIQUE$.

Proof. Use that G has edges between every pair of nodes except for

- pairs in same triple
- contradictory literals.

Also, ϕ satisfiable iff each clause has ≥ 1 true literal.

Claim: The mapping $\phi \to \langle G, k \rangle$ is polynomial-time computable.

Proof.

- \bullet Given 3cnf-function ϕ with
 - k clauses
- m variables.
- \bullet Constructing graph G
 - \blacksquare G has 3k nodes
 - Adding edges entails considering each pair of nodes in *G*:

$$\binom{3k}{2} = \frac{3k(3k-1)}{2} = O(k^2)$$

■ Time to construct G is polynomial in size of 3cnf-function ϕ .

CS 341 Practice Final

 $\mathsf{ILP} \in \mathsf{NP}$

Proof.

- The certificate c is an integer vector satisfying $Ac \leq b$.
- Here is a verifier for *ILP*:

V = "On input $\langle \langle A, b \rangle, c \rangle$:

- 1. Test whether c is a vector of all integers.
- 2. Test whether $Ac \leq b$.
- 3. If both tests pass, accept; otherwise, reject."
- \bullet If $Ay \le b$ has m inequalities and n variables, then
 - Stage 1 takes O(n) time
- Stage 2 takes O(mn) time
- So verifier V runs in O(mn), which is polynomial in size of problem instance.

Now prove *ILP* is NP-Hard by showing $3SAT <_P ILP$.

51

52

$3SAT <_m ILP$

- Reductn $f: \Omega_3 \to \Omega_I$, $\langle \phi \rangle \in 3SAT$ iff $f(\langle \phi \rangle) = \langle A, b \rangle \in ILP$.
- ullet Consider 3cnf-formula with m= 4 variables and k= 3 clauses:

$$\phi = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_4) \land (\overline{x_2} \lor \overline{x_4} \lor \overline{x_3})$$

- Define integer linear program with
 - 2m = 8 variables $y_1, y'_1, y_2, y'_2, y_3, y'_3, y_4, y'_4$
 - $lack y_i$ corresponds to x_i
 - \mathbf{A} y_i' corresponds to $\overline{x_i}$
 - \blacksquare 3 sets of inequalities for each of pair y_i, y_i' :

$$0 \le y_1 \le 1,$$
 $0 \le y_1' \le 1,$ $y_1 + y_1' = 1$
 $0 \le y_2 \le 1,$ $0 \le y_2' \le 1,$ $y_2 + y_2' = 1$
 $0 \le y_3 \le 1,$ $0 \le y_3' \le 1,$ $y_3 + y_3' = 1$
 $0 \le y_4 \le 1,$ $0 \le y_4' \le 1,$ $y_4 + y_4' = 1$

which guarantee that exactly one of y_i and y'_i is 1, and other is 0.

- \bullet $0 \le y_i \le 1 \iff -y_i \le 0 \& y_i \le 1$
- $y_i + y_i' = 1 \iff y_i + y_i' \le 1 \& y_i + y_i' \ge 1$

$3SAT \leq_m ILP$

ullet Recall 3cnf-formula with m=4 variables and k=3 clauses:

$$\phi = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_4) \land (\overline{x_2} \lor \overline{x_4} \lor \overline{x_3})$$

- lacktriangledown ϕ satisfiable iff each clause evaluates to 1.
- A clause evaluates to 1 iff at least one literal in the clause equals 1.
- For each clause $(x_i \vee \overline{x_j} \vee x_\ell)$, create inequality $y_i + y_j' + y_\ell \geq 1$.
- For our example, ILP has inequalities

$$y_1 + y_2 + y_3' \ge 1$$

 $y_1' + y_2' + y_4 \ge 1$
 $y_2' + y_4' + y_3' \ge 1$

which guarantee that each clause evaluates to 1.

CS 341 Practice Final

3SAT < m ILP

• Given 3cnf-formula:

$$\phi = (x_1 \vee x_2 \vee \overline{x_3}) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_4) \wedge (\overline{x_2} \vee \overline{x_4} \vee \overline{x_3})$$

• Constructed ILP:

$$0 \le y_1 \le 1, \qquad 0 \le y_1' \le 1, \qquad y_1 + y_1' = 1$$

$$0 \le y_2 \le 1, \qquad 0 \le y_2' \le 1, \qquad y_2 + y_2' = 1$$

$$0 \le y_3 \le 1, \qquad 0 \le y_3' \le 1, \qquad y_3 + y_3' = 1$$

$$0 \le y_4 \le 1, \qquad 0 \le y_4' \le 1, \qquad y_4 + y_4' = 1$$

$$y_1 + y_2 + y_3' \ge 1$$

$$y_1' + y_2' + y_4 \ge 1$$

$$y_2' + y_4' + y_3' \ge 1$$

• Note that:

 ϕ satisfiable \iff constructed ILP has solution (with values of variables $\in \{0,1\}$)

CS 341 Practice Final

Reducing 3SAT to ILP Takes Polynomial Time

- ullet Given 3cnf-formula ϕ with
- \blacksquare m variables: x_1, x_2, \ldots, x_m
- k clauses
- Constructed ILP has
 - **1** 2m variables: $y_1, y'_1, y_2, y'_2, \dots, y_m, y'_m$
 - 6m + k inequalities:
 - \blacktriangle 3 sets of inequalities for each pair y_i, y_i' :

$$0 \le y_i \le 1, \qquad 0 \le y_i' \le 1, \qquad y_i + y_i' = 1,$$

so total of 6m inequalities of this type.

f A For each clause in ϕ , ILP has corresponding inequality, e.g.,

$$(x_1 \lor x_2 \lor \overline{x_3}) \quad \longleftrightarrow \quad y_1 + y_2 + y_3' \ge 1,$$

so total of k inequalities of this type.

ullet Thus, size of ILP is polynomial in m and k.