
Practice Problems for Final Exam

CS 341: Foundations of Computer Science II

Prof. Marvin K. Nakayama

1. Short answers:

(a) Define the following terms and concepts:

i. Union, intersection, set concatenation, Kleene-star, set subtraction, complement

ii. A set S is closed under an operation f

iii. Regular language

iv. Kleene’s theorem

v. Context-free language

vi. Chomsky normal form

vii. Church-Turing Thesis

viii. Turing-decidable language

ix. Turing-recognizable language

x. co-Turing-recognizable language

xi. Countable and uncountable sets

xii. Language A is mapping reducible to language B, A ≤m B

xiii. Function f(n) is O(g(n))

xiv. Classes P and NP

xv. Language A is polynomial-time mapping reducible to language B, A ≤P B.

xvi. NP-complete

xvii. NP-hard

(b) Give the transition functions δ (i.e., specify the domains and ranges) of a DFA, NFA, PDA,
Turing machine and nondeterministic Turing machine.

(c) Explain the “P vs. NP” problem.

2. Recall that ATM = { 〈M,w〉 | M is a TM that accepts string w }.

(a) Prove that ATM is undecidable. You may not cite any theorems or corollaries in your proof.

(b) Show that ATM is Turing-recognizable.

3. Each of the languages below in parts (a), (b), (c), (d) is of one of the following types:

Type REG. It is regular.
Type CFL. It is context-free, but not regular.
Type DEC. It is Turing-decidable, but not context-free.

For each of the following languages, specify which type it is. Also, follow these instructions:

• If a language L is of Type REG, give a regular expression and a DFA (5-tuple) for L.

• If a language L is of Type CFL, give a context-free grammar (4-tuple) and a PDA (6-tuple) for
L. Also, prove that L is not regular.

• If a language L is of Type DEC, give a description of a Turing machine that decides L. Also,

prove that L is not context-free.

(a) A = {w ∈ Σ∗ | w = reverse(w) and the length of w is divisible by 4 }, where Σ = {0, 1}.

Circle one type: REG CFL DEC

1



(b) B = { bnanbn | n ≥ 0 }.

Circle one type: REG CFL DEC

(c) C = {w ∈ Σ∗ | na(w) mod 4 = 1 }, where Σ = {a, b} and na(w) is the number of a’s in string
w. For example, na(babaabb) = 3. Also, recall j mod k returns the remainder after dividing j

by k, e.g., 3 mod 4 = 3, and 9 mod 4 = 1.

Circle one type: REG CFL DEC

(d) D = { bnanbkck | n ≥ 0, k ≥ 0 }. [Hint: Recall that the class of context-free languages is closed
under concatenation.]

Circle one type: REG CFL DEC

4. Each of the languages below in parts (a), (b), (c), (d) is of one of the following types:

Type DEC. It is Turing-decidable.
Type TMR. It is Turing-recognizable, but not decidable.
Type NTR. It is not Turing-recognizable.

For each of the following languages, specify which type it is. Also, follow these instructions:

• If a language L is of Type DEC, give a description of a Turing machine that decides L.

• If a language L is of Type TMR, give a description of a Turing machine that recognizes L.
Also, prove that L is not decidable.

• If a language L is of Type NTR, give a proof that it is not Turing-recognizable.

In each part below, if you need to prove that the given language L is decidable, undecidable, or not
Turing-recognizable, you must give an explicit proof of this; i.e., do not just cite a theorem that
establishes this without a proof. However, if in your proof you need to show another language L′

has a particular property and there is a theorem that establishes this, then you may simply cite the
theorem for L′ without proof.

(a) EQTM = { 〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2) }. [Hint: show ATM ≤m EQTM.]

Circle one type: DEC TMR NTR

(b) HALTTM = { 〈M,w〉 | M is a TM that halts on input w }. [Hint: modify the universal TM to
show HALTTM is Turing-recognizable.]

Circle one type: DEC TMR NTR

(c) EQDFA = { 〈M1,M2〉 | M1,M2 are DFAs with L(M1) = L(M2) }.

Circle one type: DEC TMR NTR

(d) ATM, where ATM = { 〈M,w〉 | M is a TM that accepts string w }.

Circle one type: DEC TMR NTR

5. Let L1, L2, L3, . . . be an infinite sequence of regular languages, each of which is defined over a common
input alphabet Σ. Let L = ∪∞

k=1Lk be the infinite union of L1, L2, L3, . . .. Is it always the case
that L is a regular language? If your answer is YES, give a proof. If your answer is NO, give a
counterexample. Explain your answer. [Hint: Consider, for each k ≥ 0, the language Lk = {akbk}.]

2



6. Let L1, L2, and L3 be languages defined over the alphabet Σ = {a, b}, where

• L1 consists of all possible strings over Σ except the strings w1, w2, . . . , w100; i.e., start with all
possible strings over the alphabet, take out 100 particular strings, and the remaining strings
form the language L1;

• L2 is recognized by an NFA; and

• L3 is recognized by a PDA.

Prove that (L1 ∩ L2)L3 is a context-free language. [Hint: First show that L1 and L2 are regular.
Also, consider L1, the complement of L1.]

7. Write Y or N in the entries of the table below to indicate which classes of languages are closed under
which operations.

Regular Decidable Turing-recognizable
Operation languages CFLs languages languages

Union

Intersection

Complementation

8. Consider the following context-free grammar G in Chomsky normal form:

S → a | Y Z

Z → ZY | a

Y → b | ZZ | Y Y

Use the CYK (dynamic programming) algorithm to fill in the following table to determine if G

generates the string babba. Does G generate babba?

9. Recall that

CLIQUE = { 〈G, k〉 | G is an undirected graph with a k-clique },

3SAT = { 〈φ〉 | φ is a satisfiable 3cnf-function }.

Show that CLIQUE is NP-Complete by showing that CLIQUE ∈ NP and 3SAT ≤P CLIQUE .
Explain your reduction for the general case and not just for a specific example. Be sure to prove
your reduction works and that it requires polynomial time. Also, be sure to provide proofs of these
results, and don’t just cite a theorem.

10. Recall that

ILP = { 〈A, b〉 | matrix A and vector b satisfy Ay ≤ b with y and integer vector }.

Show that ILP is NP-Complete by showing that ILP ∈ NP and 3SAT ≤P ILP . Explain your
reduction for the general case and not just for a specific example. Be sure to prove your reduction
works and that it requires polynomial time. Also, be sure to provide proofs of these results, and
don’t just cite a theorem.

3



List of Theorems

Thm 1.A. The class of regular languages is closed under union.

Thm 1.B. The class of regular languages is closed under concatenation.

Thm 1.C. Every NFA has an equivalent DFA.

Thm 1.D. The class of regular languages is closed under Kleene-star.

Thm 1.E. (Kleene’s Theorem) Language A is regular iff A has a regular expression.

Thm 1.F. If A is finite language, then A is regular.

Thm 1.G. The class of regular languages is closed under intersection.

Thm 1.H. The class of regular languages is closed under complementation.

Thm 1.I. (Pumping lemma for regular languages) If A is regular language, then ∃ number p where, if
s ∈ A with |s| ≥ p, then can split s = xyz satisfying the conditions (1) xyiz ∈ A for each i ≥ 0, (2)
|y| > 0, and (3) |xy| ≤ p.

Thm 2.A. Every CFL can be described by a CFG G = (V,Σ, R, S) in Chomsky normal form, i.e., each
rule in G has one of two forms: A → BC or A → x, where A ∈ V , B,C ∈ V − {S}, x ∈ Σ, and we
also allow the rule S → ε.

Thm 2.B. If A is a regular language, then A is also a CFL.

Thm 2.C. A language is context free iff some PDA recognizes it.

Thm 2.D. (Pumping lemma for CFLs) For every CFL L, ∃ pumping length p such that ∀ strings s ∈ L

with |s| ≥ p, can split s = uvxyz with (1) uvixyiz ∈ L ∀ i ≥ 0, (2) |vy| ≥ 1, (3) |vxy| ≤ p.

Thm 2.E. The class of CFLs is closed under union.

Thm 2.F. The class of CFLs is closed under concatenation.

Thm 2.G. The class of CFLs is closed under Kleene-star.

Thm 3.A. For every multi-tape TM M , there is a single-tape TM M ′ such that L(M) = L(M ′).

Thm 3.B. Every NTM has an equivalent deterministic TM.

Cor 3.C. Language L is Turing-recognizable iff an NTM recognizes it.

Thm 3.D. A language is enumerable iff some enumerator enumerates it.

Church-Turing Thesis. Informal notion of algorithm corresponds to a Turing machine that always halts.

Thm 4.A. ADFA = { 〈B,w〉 | B is a DFA that accepts string w } is Turing-decidable.

Thm 4.B. ANFA = { 〈B,w〉 | B is an NFA that accepts string w } is Turing-decidable.

Thm 4.C. AREX = { 〈R,w〉 | R is a regular expression that generates string w } is Turing-decidable.

Thm 4.D. EDFA = { 〈B〉 | B is a DFA with L(B) = ∅ } is Turing-decidable.

Thm 4.E. EQDFA = { 〈A,B〉 | A and B are DFAs with L(A) = L(B) } is Turing-decidable.

Thm 4.F. ACFG = { 〈G,w〉 | G is a CFG that generates string w } is Turing-decidable.

Thm 4.G. ECFG = { 〈G〉 | G is a CFG with L(G) = ∅ } is Turing-decidable.

Thm 4.H. Every CFL is Turing-decidable.

Thm 4.I. ATM = { 〈M,w〉 | M is a TM that accepts string w } is undecidable.

Thm 4.J. The set R of all real numbers is uncountable.

1



Cor 4.K. Some languages are not Turing-recognizable.

Thm 4.L. A language is decidable iff it is both Turing-recognizable and co-Turing-recognizable.

Cor 4.M. ATM is not Turing-recognizable.

Thm 5.A. HALTTM = { 〈M,w〉 | M is a TM that halts on w } is undecidable.

Thm 5.B. ETM = { 〈M〉 | M is a TM with L(M) = ∅ } is undecidable.

Thm 5.C. REGTM = { 〈M〉 | M is a TM and L(M) is regular } is undecidable.

Thm 5.D. EQTM = { 〈M1,M2〉 | M1, M2 are TMs with L(M1) = L(M2) } is undecidable.

Thm 5.E. (Rice’s Thm.) Let P be any subset of the class of Turing-recognizable languages such that
P 6= ∅ and P 6= ∅. Then LP = { 〈M〉 | L(M) ∈ P } is undecidable.

Thm 5.F. If A ≤m B and B is Turing-decidable, then A is Turing-decidable.

Cor 5.G. If A ≤m B and A is undecidable, then B is undecidable.

Thm 5.H. If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.

Cor 5.I. If A ≤m B and A is not Turing-recognizable, then B is not Turing-recognizable.

Thm 5.J. ETM = { 〈M〉 | M is a TM with L(M) = ∅ } is not Turing-recognizable.

Thm 5.K. EQTM = { 〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2) } is neither Turing-recognizable
nor co-Turing-recognizable.

Thm 7.A. Let t(n) be a function with t(n) ≥ n. Then any t(n)-time multi-tape TM has an equivalent
O(t2(n))-time single-tape TM.

Thm 7.B. Let t(n) be a function with t(n) ≥ n. Then any t(n)-time NTM has an equivalent 2O(t(n))-time
deterministic 1-tape TM.

Thm 7.C. PATH ∈ P.

Thm 7.D. RELPRIME ∈ P.

Thm 7.E. Every CFL is in P.

Thm 7.F. A language is in NP iff it is decided by some nondeterministic polynomial-time TM.

Cor 7.G. NP =
⋃

k≥0NTIME(nk)

Thm 7.H. CLIQUE ∈ NP.

Thm 7.I. SUBSET-SUM ∈ NP.

Thm 7.J. If A ≤P B and B ∈ P, then A ∈ P.

Thm 7.K. 3SAT is polynomial-time reducible to CLIQUE .

Thm 7.L. If there is an NP-Complete problem B and B ∈ P, then P = NP.

Thm 7.M. If B is NP-Complete and B ≤P C for C ∈ NP, then C is NP-Complete.

Thm 7.N. (Cook-Levin Thm.) SAT is NP-Complete.

Cor 7.O. 3SAT is NP-Complete.

Cor 7.P. CLIQUE is NP-Complete.

Thm 7.Q. ILP is NP-Complete.

2


