Math 213 • Common Exam 1

February 12, 2014

Show all work for each problem, clearly explaining your solution. This is a closed-book exam: no notes or electronic devices allowed. Note that points add up to 112: you may skip one short problem

1. (11pts) Find the projection of vector $\mathbf{u}=\langle 1,0,2\rangle=\mathbf{j}+2 \mathbf{k}$ onto vector $\mathbf{v}=\langle 1,1,3\rangle=\mathbf{i}+\mathbf{j}+3 \mathbf{k}$
2. (12pts) Consider lines $\mathbf{r}_{1}(t)=\langle 0,2,1\rangle+t\langle 1,-1,1\rangle$, and $\mathbf{r}_{2}(t)=\langle 2,6,3\rangle+t\langle 2,1,5\rangle$. Are these lines parallel, intersecting, or neither (i.e., skew)?
3. (14pts) Consider vectors $\mathbf{u}=2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$ and $\mathbf{v}=\mathbf{i}-\mathbf{j}$.
a) Find the area of the parallelogram with sides formed by vectors \mathbf{u} and \mathbf{v}
b) Find the angle between vectors \mathbf{u} and \mathbf{v}
4. (12pts) Find the equation of the line of intersection of the planes $x+2 y-z=3$ and $x-3 y+5 z=1$
5. (12pts) Find the equation of the plane containing points $(0,1,0),(1,0,-2)$ and $(2,3,0)$.
6. (15pts) Consider the shortest distance between some point P and the line passing through point S and parallel to vector \mathbf{v}.
a) Which of the following formulas gives the correct expression for this distance:
(i) $D=\frac{|\overrightarrow{S P} \times \overrightarrow{\mathbf{v}}|}{|\overrightarrow{\mathbf{v}}|}$
(ii) $D=\frac{|\overrightarrow{S P} \cdot \overrightarrow{\mathbf{v}}|}{|\overrightarrow{\mathbf{v}}|}$
(iii) $D=\frac{|\overrightarrow{S P} \cdot \overrightarrow{\mathbf{v}}|}{|\overrightarrow{S P}|}$
(iv) $D=\frac{|\overrightarrow{S P} \times \overrightarrow{\mathbf{v}}|}{|\overrightarrow{S P}|}$
b) Explain the distance formula using a simple sketch (the sketch should show vectors $\overrightarrow{S P}$ and $\overrightarrow{\mathbf{v}}$, the angle between them, and the distance between the line and the point).
c) Find the distance between the point (1, 1, 1) and the line $x=t, y=1-t, z=3$.
7. (12pts) Consider the surface $y-z^{2}-6 z-x^{2}+13=0$. Categorize and sketch a couple different x-sections and y-sections, and categorize the surface. Make a rough sketch (make sure to label the axes).
8. (12pts) Describe geometrically the position of all points P satisfying the equation $\overrightarrow{P_{0} P} \times \overrightarrow{\mathbf{v}}=0$, where P_{0} is a fixed point, and $\overrightarrow{P_{0} P}$ is a vector from P_{0} to P. Explain your answer.
9. (12pts) Which of the following expressions are always true? Explain (very briefly)
(a) $|\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{v}}|=|\overrightarrow{\mathbf{v}}|^{2}$
(b) $|\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{v}}|=0$
(c) $|\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}}|=0$
(d) $\overrightarrow{\mathbf{v}} \cdot(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}})=0$
(e) $|\overrightarrow{\mathbf{v}} \cdot(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}})|=|\overrightarrow{\mathbf{w}} \cdot(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}})|$
