- 1. Sketch and use double integration in polar coordinates to find the area of one "petal" of a rose-shaped region bounded by the curve $r = \cos 3\theta$.
- 2. Set up limits on a triple integral over a volume enclosed in the first octant by the surface $z=4-x^2-2y$. Use three different orders of integration: dx dy dz, dy dx dz and dz dx dy
- 3. Use triple integration in cylindrical coordinates to find the mass of an object enclosed between the cone $z^2 = 4(x^2 + y^2)$ and the paraboloid $z = x^2 + y^2$. The density of the object equals $\delta(x, y, z) = x^2 z$

4. Use triple integration in spherical coordinates to find the centroid of an object enclosed between the sphere ρ = cos ϕ and the top half of the sphere ρ = 2, as shown in the Figure (hint: you only need to find \overline{z} , since it is clear that $\overline{x} = \overline{y} = 0$)

5. Region R in the xy-plane is bounded by lines y = -2x + 4, y = -2x + 7, y = x - 2, and y = x + 1. Make a transformation to the uv-plane for which this domain is rectangular, and evaluate the following integral:

$$\iint\limits_{R} (y+2x)^{2} (y-x) dx dy$$