1. Find the line integral of vector field $\vec{\mathbf{F}}(\vec{\mathbf{r}}) = \langle \sqrt{y}, x, z \rangle$ over a path connecting points (0,0,1) and (1,0,1) and consisting of a parabolic segment C_1 and a straight line C_2 , as indicated in the figure

- **2.** Consider the vector field $\vec{\mathbf{F}}(\vec{\mathbf{r}}) = \langle x y, x \rangle$:
 - a) Sketch this vector field in the x-y plane
 - b) Find the total circulation of this vector field around a triangular closed curve connecting vertices (0,0), (2,0) and (0,1).
 - c) Find the **flux** of this vector field **across** a circle of radius 2 centered at the origin
- **3.** Consider vector field $\vec{\mathbf{F}}(\vec{\mathbf{r}}) = \langle z^2 + yze^{xz}, e^{xz} 2y\sin(y^2), 2xz + xye^{xz} \rangle$.
 - a. Show that $\vec{F}(\vec{r})$ is conservative by calculating its curl , $\vec{
 abla} imes \vec{F}(\vec{r})$
 - b. Find the potential function of this vector field.
 - c. Find total work performed by this force over a path from point (1, 0, 0) to point (0, $\sqrt{\pi}$, 1)