\qquad

Take-home Quiz \#5 Math 213-002 May 2, 2014

Find the flux of vector field $\mathbf{F}=\langle 0, y, z\rangle$ across part of the cylindrical surface $x^{2}+y^{2}=R^{2}$ located between the planes $z=0$ and $z=1$, in the outward direction. Follow these steps:

1. Find $\mathbf{n} d \sigma= \pm\left(\frac{\partial \mathbf{r}}{\partial \theta} \times \frac{\partial \mathbf{r}}{\partial z}\right) d \theta d z$, using cylindrical parametrization: $\mathbf{r}(\theta, z)=\langle R \cos \theta, R \sin \theta, z\rangle$
2. Calculate the dot product $\mathbf{F} \cdot \mathbf{n} d \sigma$
3. Evaluate the integral over the surface of this cylinder: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$
