Math 332-001 First Midterm

February 14, 2009

1. For the statements below, provide a proof if true or a counterexample if false:
(a) $\overline{\left(\frac{z_{1}}{z_{2} z_{3}}\right)}=\overline{z_{1}}\left(\frac{1}{\overline{z_{2}} z_{3}}\right)$
(b) $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
2. Find all values of $(1-i)^{1 / 3}$. Give your answers in cartesian form.
3. Identify the image of the region defined by $z=x+i y$ with

$$
x^{2}+y^{2} \leq 1 \quad \text { and } \quad y>0
$$

under the transformation $f(z)=1 / z$. Sketch both regions (i.e., the original region and its image).
4. Prove, using the $\delta-\epsilon$ definition of the limit, that the function $f(z)=2 \bar{z}$ is continuous at all points $z_{0} \in \mathbb{C}$. Prove, using the method of your choice, that $f(z)$ is nowhere differentiable.
5. Show that $u(x, y)=\sin x \sinh y$ is harmonic and find its harmonic conjugate $v(x, y)$. Find $f(z)=u+i v$ explicitly as a function of z. Is it true that $\overline{f(z)}=f(\bar{z})$? What is the largest open, connected set on which $1 / f(z)$ is analytic?
6. Find all values for the following, then identify their principal values:
(a) $\log (2 i)$
(b) $\arccos (2+3 i)$

