Math 332-001 Second Midterm

February 14, 2009

Answer all questions in the booklet provided. Each carries equal weight.

1. Let C_{1} be the portion of the unit circle running in a counter-clockwise direction from $(1,0)$ to $(1 / \sqrt{2}, 1 / \sqrt{2})$, let C_{2} be the straight line running from $(1 / \sqrt{2}, 1 / \sqrt{2})$ to $(0,0)$, and let C_{3} be the straight line running from $(0,0)$ to $(1,0)$. Let $C=C_{1}+C_{2}+C_{3}$. If $f(z)=\bar{z}$, calculate
(a) $\int_{C_{1}} f(z) d z$,
(b) $\int_{C_{2}} f(z) d z$,
(c) $\int_{C_{3}} f(z) d z$,
(d) $\int_{C} f(z) d z$.

Without doing any calculations, provide a different function $f(z)$ that would give the same answer you calculated in part (c) and an answer of zero in part (d). Explain your answer.
2. Let C be the contour running from $(0,-1)$ to $(0,1)$ on the unit semicircle contained in the left half-plane. Use antiderivatives to find $\int_{C} f(z) d z$ where

$$
\text { (a) } \quad f(z)=z e^{z}, \quad \text { (b) } \quad f(z)=\frac{1}{z} \text {. }
$$

For which of the above integrals would the answer change if the contour were connecting the same two points but were lying on the unit semicircle in the right half-plane? Explain.
3. Use either the Cauchy-Goursat Theorem or the Cauchy Integral Formula to evaluate the following integrals, where C is the positively oriented closed contour lying on the unit circle.
(a) $\int_{C} \frac{\cosh z}{(z-3)(2 z-i)} d z$
(b) $\int_{C} \frac{e^{z}}{z^{3}} d z$
(c) $\int_{C} \frac{\sinh z}{z} d z$
4. Find a Laurent series that converges to

$$
f(z)=\frac{1}{z^{2}-4 z}
$$

in an annular domain centered at $z=1$ and containing the point $z=2+2 i$. State where the Laurent series converges.

