Math 332-001 Second Midterm

February 14, 2009

Answer all questions in the booklet provided. Each carries equal weight.

1. Let C_1 be the portion of the unit circle running in a counter-clockwise direction from (1,0) to $(1/\sqrt{2}, 1/\sqrt{2})$, let C_2 be the straight line running from $(1/\sqrt{2}, 1/\sqrt{2})$ to (0,0), and let C_3 be the straight line running from (0,0) to (1,0). Let $C = C_1 + C_2 + C_3$. If $f(z) = \overline{z}$, calculate

(a)
$$\int_{C_1} f(z) dz$$
, (b) $\int_{C_2} f(z) dz$, (c) $\int_{C_3} f(z) dz$, (d) $\int_C f(z) dz$.

Without doing any calculations, provide a different function f(z) that would give the same answer you calculated in part (c) and an answer of zero in part (d). Explain your answer.

2. Let C be the contour running from (0, -1) to (0, 1) on the unit semicircle contained in the left half-plane. Use antiderivatives to find $\int_C f(z) dz$ where

(a)
$$f(z) = ze^z$$
, (b) $f(z) = \frac{1}{z}$.

For which of the above integrals would the answer change if the contour were connecting the same two points but were lying on the unit semicircle in the *right* half-plane? Explain.

3. Use either the Cauchy-Goursat Theorem or the Cauchy Integral Formula to evaluate the following integrals, where C is the positively oriented closed contour lying on the unit circle.

(a)
$$\int_C \frac{\cosh z}{(z-3)(2z-i)} dz$$
 (b) $\int_C \frac{e^z}{z^3} dz$ (c) $\int_C \frac{\sinh z}{z} dz$

4. Find a Laurent series that converges to

$$f(z) = \frac{1}{z^2 - 4z}$$

in an annular domain centered at z = 1 and containing the point z = 2+2i. State where the Laurent series converges.