Math 335-002 * Midterm examination

February 20, 2008
This is a closed-book exam: notes or calculators are not allowed. Please show all solution steps to receive full credit.

1. (10) Write an equation of plane that contains points $(1,1,1),(1,2,3)$ and $(3,2,1)$ [Hint: first, find a vector perpendicular to this plane, using vector algebra]
2. (12) Find the divergence of the vector field $\overrightarrow{\mathbf{V}}(\overrightarrow{\mathbf{r}})=\ln (r) \overrightarrow{\mathbf{r}}$, where r is the length of the position vector ($r=|\overrightarrow{\mathbf{r}}|$). Simplify the answer (i.e. express it as a function of r and/or $\overrightarrow{\mathbf{r}}$ only).
3. (18) Consider the following vector expression: $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{b}}$
a) Re-write this vector expression in suffix notation (do not simplify)
b) Get rid of all cross products in this expression, using vector algebra
4. (15) Consider a scalar field $f(x, y)=\sqrt{\ln y+x}$.
a) Use the linear approximation to estimate $f(1.1,1.2)$.
b) Draw isocurves $f=0, f=1, f=2$
5. (15) Sketch the vector field $\overrightarrow{\mathbf{u}}=(y-x, x, 0)$. Is this vector field conservative? If yes, find its potential function.
6. (10) Simplify and convert into vector form: $a_{l} a_{q} a_{m} b_{n} \varepsilon_{k m p} \delta_{k j} \delta_{p n} \delta_{l q}$
7. (22) Consider a vector field $\overrightarrow{\mathbf{u}}(\overrightarrow{\mathbf{r}})=\left(e^{y}, e^{2 y}, x^{2}+z^{2}\right)$.
a) Re-write the following quantities using symbols grad, $d i v$, curl and ∇^{2}, and compute them: $(\vec{\nabla} \cdot \vec{\nabla}) \overrightarrow{\mathbf{u}}, \vec{\nabla}(\vec{\nabla} \cdot \overrightarrow{\mathbf{u}}), \vec{\nabla} \times(\vec{\nabla} \times \overrightarrow{\mathbf{u}}), \vec{\nabla} \cdot \vec{\nabla} \times \overrightarrow{\mathbf{u}}$
b) Which of the quantities in part "a" are linearly dependent? Write the relationship between these quantities.

Alternative problem 2 (worth $\mathbf{8}$ points instead of 12): Calculate the gradient of $\ln (r)$.

