Math 335-002 * Midterm examination

February 14, 2007
This is a closed-book exam: notes or calculators are not allowed. Please show all solution steps to receive full credit.

1. (10) Use vector algebra to find the angle between vectors $(2,0,2)$ and $(0,2,2)$. What is the area of the parallelogram whose sides are formed by these two vectors?
2. (10) Simplify the following expression: $(\vec{c}-\vec{b}) \cdot(\vec{c} \times \vec{b}) \times \vec{c}$
3. (10) In the physics of gravity and electrostatics the potential function (potential energy) has the form $\varphi(\overrightarrow{\mathbf{r}})=c / r$, where c is a constant and r is the length of the position vector ($r=|\overrightarrow{\mathbf{r}}|$). Calculate the field $\overrightarrow{\mathbf{F}}$ (the force) for this potential $\varphi(\overrightarrow{\mathbf{r}})$, using the formula $\overrightarrow{\mathbf{F}}=-\vec{\nabla} \varphi$ (note the minus sign). Show that it can be written as $\overrightarrow{\mathbf{F}}=c \overrightarrow{\mathbf{r}} / r^{n}$, where n is an integer power you have to determine.
4. (20) Consider a scalar field $f(x, y)=\ln \left(x^{3} / y\right)$
a) Calculate $\vec{\nabla} f$
b) Estimate $f(1.1,1.2)$ using the linear approximation for f around an appropriately chosen nearby point $\mathbf{r}_{\text {o }}$
c) Sketch this field and show the direction of increase of f on your sketch. Check by calculating the direction of increase at points $(1,1)$ and $(-1,-1)$
5. (15) Consider a vector field $\overrightarrow{\mathbf{u}}=(x-y, y-x, 0)$
a) Sketch this field
b) Calculate its divergence and curl, and explain your results in terms of your sketch.
6. (15) Simplify where possible and convert into vector form:
a) $\delta_{k l} a_{j} \delta_{m j} a_{k} b_{m}$
b) $a_{j} c_{m} b_{n} b_{k} \varepsilon_{j m n}$
c) $\varepsilon_{i k m} \varepsilon_{m l j} a_{k} b_{l} \delta_{i j}$

7 (22) Consider a conservative vector field $\overrightarrow{\mathbf{V}}(\overrightarrow{\mathbf{r}})=\left(x y^{2}, y\left(x^{2}+z^{2}\right), z y^{2}\right)$
a) Calculate the Laplacian of $\overrightarrow{\mathbf{V}}$
b) Is this field irrotational, solenoidal, neither irrotational nor solenoidal, or both irrotational and solenoidal?
c) Find the potential function of this field, $f(\overrightarrow{\mathbf{r}})$
d) Calculate the Laplacian of f (hint: even if you failed to solve part c, you could still do this calculation)

Alternative to problem 4: if you somehow can't figure it out, solve all 4 parts ($a-d$) for a a somewhat different function $f(x, y)=\ln (\boldsymbol{y}) / \boldsymbol{x}$. In part c, check the direction of increase using points $(1, e) \&(-1, e)$ (recall that $e \sim 2.718 .$.

