Math 335-002 * Midterm \#2
 March 21, 2007

Please show all work to receive full credit. Notes and calculators are not allowed

1. (18pts) Calculate the following derivatives using suffix notation (here $\overrightarrow{\mathbf{r}}$ is the position vector, and $r=|\overrightarrow{\mathbf{r}}|$):
a) $\vec{\nabla} \cdot(\overrightarrow{\mathbf{r}} \sin r)$
b) $\vec{\nabla} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{r}})$, where $\overrightarrow{\mathbf{a}}$ is any constant vector
2. (12pts) Use product rules to expand the expression $\vec{\nabla} \cdot[f \vec{\nabla} f+f \vec{\nabla} \times \overrightarrow{\mathbf{u}}]$, where $\overrightarrow{\mathbf{u}}$ is a vector field, and f is a scalar field satisfying the Laplace's equation, $\nabla^{2} f=0$. Simplify if possible.
3. (20pts) Calculate the line integrals (work) of the vector field (force) $\overrightarrow{\mathbf{F}}=\left(y^{2}, 2 x y, 0\right)$ along two different paths connecting points $\mathrm{A}=(0,2,0)$ and $\mathrm{B}=(4,0,0)$:
a) (8pts) A parabola $\mathrm{y}=\sqrt{4-x}$
b) (8pts) A straight line
c) (4pts) Explain how to obtain the answer to (a) and (b) without integration.
4. (20pts) Consider the part of the curved surface S given by $x^{2}+y+z=1$, enclosed within the region (octant) $x \geq 0, y \geq 0, \mathrm{z} \geq 0$.
a) (4pts) Sketch the intersections of this surface with each of the three coordinate planes bounding this surface on its three sides ($x=0, \mathrm{y}=0$, and $\mathrm{z}=0$)
b) (16pts) Calculate $\iint_{S} \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{n}} d S$ for the field $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{r}}=(x, y, z)$, with $\overrightarrow{\mathbf{n}}$ pointing outward.
5. (20pts) Use the divergence theorem to calculate the surface integral $\iint_{S} \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{n}} d S$ of the field $\overrightarrow{\mathbf{u}}=\left(x z, y z, z^{2}\right)$ over the curved surface $x^{2}+y^{2}-z^{2} \leq 0,0 \leq \mathrm{z} \leq 1$, with $\overrightarrow{\mathbf{n}}$ pointing outward. Start your solution by sketching this surface (hint: you are supposed to convert the surface integration into volume integration).
6. (10pts) Use the divergence theorem to find the relationship between the volume of any object V and the integral of the position vector $\overrightarrow{\mathbf{r}}$ over the surface of this object, $\oiint_{S} \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{n}} d S$ (hint: simply apply the divergence theorem to this surface integral)

Alternative to problem 5 (13 points only) Calculate the mass of a solid of rotation $x^{4}+y^{2}+z^{2} \leq 1, x \geq 0$, with mass density $\rho(\overrightarrow{\mathbf{r}})=x^{2}$ (hint: it has a shape of a deformed hemisphere)

