Math 335-002
 Homework \#10

Due date: March 5, 2008

1. Read p. 59 of the book, the derivation of the equation (3.20) on p. 58
2. Problems 2.1-2.3, p. 31
3. Find the line integral of the vector field $\overrightarrow{\mathbf{u}}=\left(x^{2}, y^{1 / 3}, z\right)$ along the curve given by $x=t^{2}$, $y=e^{3 t}, z=e^{2 t}$, for t varying from 0 to 1
4. Consider a conservative force $\boldsymbol{F}=-\nabla \varphi$ with a potential energy φ given by $\varphi=r^{2}$. Use line integration to calculate the work done by this force along the parabola $y=x^{2}$, for x varying from 0 to 1 (assume $z=0$). Compare this value with the difference in potential energy between the endpoints of the curve, $\varphi(\mathrm{B})-\varphi(\mathrm{A})$.
5. Calculate the line integral of a vector field $\overrightarrow{\mathbf{u}}=\left(y^{2},-x, 0\right)$ over the following curves connecting points $\mathrm{A}=(1,0,0)$ and $\mathrm{B}=(0,1,0)$:
a. A horizontal line connecting point A and the origin $(0,0,0)$ plus a vertical line connecting the origin and point B .
b. A circular arc connecting points A and B (recall that trigonometric functions parametrize this circle)
c. A straight line connecting points A and B

Compare the three results. Is $\overrightarrow{\mathbf{u}}$ a conservative vector field? Calculate the curl of $\overrightarrow{\mathbf{u}}$ to check your conclusion.

